Partial differential equations seminars in Metz and Nancy
The seminars take place
– Fridays from 11am to 12pm, Seminar room, IECL Metz
– Tuesdays from 10:45 to 11:45 am, Conference room, IECL Nancy
During this period, until further notice, the seminars will take place in our virtual room on Zoom, at this link. The organizers of the seminars are : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Julie Valein (Nancy) and Ilaria Lucardesi (Nancy).
Upcoming presentations
Camille Labourie
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 January 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :TBA
Ngoc Nhi Nguyen (Université de Milan)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :Groupe de Travail : Échelles dégénérées pour les potentiels de simple couche harmoniques et biharmoniques (1/2)
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 10 January 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Alexandre Munnier Résumé :Camille Labourie
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 January 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :TBA
Idriss Mazari (Université Paris-Dauphine)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :Groupe de Travail : Échelles dégénérées pour les potentiels de simple couche harmoniques et biharmoniques (2/2)
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 17 January 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Alexandre Munnier Résumé :Raphaël Côte (Université de Strasbourg)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :Groupe de Travail : Titre à venir (brouillon)
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 February 2025 10:45-12:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Tillmann Wunzbacher Résumé :Attention : horaires inhabituels, le séminaire aura lieu de 10h45 à 12h15 (une séance d’une heure et demie) et sera précédé d’une pause café-gâteau de 10h15 à 10h45
Didier Bresch (Université de Savoie)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 February 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :Pei Su (Université d'Orsay)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 11 March 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pei Su (Université d'Orsay) Résumé :Séminaire : Titre à venir
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 March 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Gaudiello (Università della Campania “L. Vanvitelli”) Résumé :Pierre Rouchon (Mines Paris)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 March 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :Séminaire : Titre à venir
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 21 March 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Olivier Guibé (Université de Rouen) Résumé :Jérôme Le Rousseau (Université Paris Nord)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 March 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérôme Le Rousseau (Université Paris Nord) Résumé :Journées EDP de l'IECL 2025
Catégorie d'évènement : Conférence Date/heure : 2 April 2025 - 4 April 2025 14:00-13:00 Lieu : DescriptionL’édition 2025 des Journées EDP de l’IECL aura lieu du mercredi 2 avril vers 14h au vendredi 4 avril vers 12h30.
Cette conférence aura lieu à Metz, à l’UFR MIM, campus du Technopole.
D’autres informations seront disponibles sur le page web de la conférence, accessible en cliquant sur ce lien.
Past presentations
Méthode d’éclatement en homogénéisation périodique (première partie)
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 22 February 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Renata BUNOIU Résumé :Dans cette première partie, on présente la définition et quelques propriétés relatives à la méthode
d’éclatement, méthode spécifique pour l’homogénéisation de problèmes périodiques, c’est-à-dire des
problèmes pour lesquels la géométrie et/ou des caractéristiques physiques sont des fonctions
périodiques de certaines variables d’espace, la périodicité étant caractérisée par un petit paramètre
strictement positif. La présence du petit paramètre rend impossible la résolution numérique de ces
problèmes. Le processus d’homogénéisation consiste à faire tendre le petit paramètre vers zéro dans le
problème initial, ce qui conduit à l’obtention d’un problème homogénéisé. Ce problème, qui est une
bonne approximation du problème initial, peut être résolu numériquement. Il fournit ainsi une solution
approchée de la solution initiale. On va illustrer cette méthode en l’appliquant à un problème très
simple, celui de la diffusion de la chaleur dans un milieu périodique.
Discrétisation des inclusions différentielles du premier ordre
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 1 February 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Juliette Venel (Université Polytechnique Hauts-de-France) Résumé :Au début de l’exposé, j’introduirai les problèmes d’évolution qui prennent la forme d’inclusions différentielles. Ensuite je préciserai un cadre théorique où celles-ci sont bien posées et enfin je proposerai un schéma numérique adapté avec un ordre de convergence égal à 1/2.
Séminaire : Synthesis of observers for infinite-dimensional systems with applications
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 28 January 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Cheng-Zhong Xu Résumé :In this talk we present the problem of designing infinite-dimensional observers for infinite-dimensional systems. We consider the situation where only boundary measurement is available. Infinite-dimensional Luenberger-like observers are elaborated to infinite-dimensional dynamical systems in the abstract framework of semigroup systems. Exponential convergence of the proposed observers is guaranteed in the abstract framework by using the Lyapunov techniques. As examples explicit observers are worked out for PDE systems such as Euler-Bernoulli elastic beam systems and water wave systems. Thanks to observability property exponential or strong convergence of the designed observers is established with the convergence rate estimated in function of parameters of the observed systems, which is a desirable property for practical applications.
Schémas hypocoercifs pour l'équation de Fokker-Planck inhomogène
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 January 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Guillaume Dujardin (Inria Lille Nord-Europe) Résumé :Après une courte introduction, je montrerai dans cet expose comment on peut établir, au niveau numérique, des propriétés d’hypocoercivité discretes pour des méthodes d’intégration en temps de l’équation de Fokker–Planck linéaire, qui assurent notamment la convergence exponentielle en temps long de la solution numérique vers un état d’équilibre discret. On utilisera pour cela une méthode de preuve à la Villani, adaptée au contexte discret. Il s’agit d’un travail en commun avec Frédéric Herau (Nantes) et Pauline Lafitte (CentraleSupelec).
Annulé
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 11 January 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ivan Moyano (Université Côte d'Azur) Résumé :EDPs géométriques du deuxième et quatrième ordre
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 4 January 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas Marque (Institut für Mathematik of Potsdam University) Résumé :Les EDPs elliptiques du type $\Delta f = |\nabla f|^2$ sortent du cadre
classique de l’analyse par Calderon-Zygmund et admettent des solutions non
régulières. Il est remarquable de constater que l’équation $\Delta \phi =
|\nabla \phi|^2 \phi$, $\phi \in \mathbb S^2$, elle, satisfait une régularité. Ce
contraste ne peut s’expliquer analytiquement : les deux équations ont les
mêmes croissances, la même forme, le même comportement extérieur. Il faut
faire appel à une intuition géométrique, et à des résultats de compacité par
compensation pour expliquer cette divergence.
Cette procédure, cette idée, cette méthode, se retrouve pour analyser
d’autres équations, au deuxième ordre l’ensemble des équations harmoniques,
et au quatrième ordre, l’équation des surfaces de Willlmore.
Nous aborderons la régularité de ces solutions, et le comportement des
suites en mettant en évidence les phénomènes de concentration, conditionnés
par l’analyse des équations. Enfin nous exploiterons les liens entre les
deux problèmes pour en tirer des applications.
Global fractional Calderón-Zygmund regularity: Application to Nonlocal problem with nonlocal gradient term
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 December 2021 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Boumediene Abdellaoui (Tlemcen, Algérie) Résumé :Quand la théorie de la mesure rencontre celle de Fourier : le théorème de De Philippis et Rindler (Annals of math. 2016)
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 14 December 2021 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Antoine Lemenant Résumé :Le but de l’exposé est de comprendre la preuve du théorème de De Philippis et Rindler (2016) qui redémontre et généralise dans un cadre beaucoup plus étendu le fameux théorème dit “Rang-1” d’Alberti (1993). Pour rappel, celui-ci stipule que toute mesure (à valeurs Matrices) qui est Curl-free doit avoir une partie singulière de rang-1, répondant en particulier à une question de De Giorgi et Ambrosio à propos des fonctions BV. De Philippis et Rindler ont récemment généralisé ce résultat en découvrant une nouvelle preuve assez astucieuse basée sur la théorie de Fourier, ayant d’autres applications intéressantes. Nous nous efforcerons de faire des rappels introductifs de manière à comprendre au mieux la preuve sans trop de pré-requis, ainsi que ses principales applications.
Les notes de l’exposé d’Antoine Lemenant sont disponibles sur sa page web, en suivant ce lien.
Groupe de Travail : Euler - Schrödinger
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 10 December 2021 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jérémy Faupin Résumé :- Lien entre l’hydrodynamique quantique et les équations de Schrödinger non linéaires
- Vitesse de propagation maximale pour les équations de Schrödinger
Stabilization of the damped plate equation under general boundary condition
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 December 2021 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Emmanuel Zongo (Université Sorbonne Paris Nord) Résumé :Dans cet exposé, nous montrons un résultat de stabilisation pour l’équation de la plaque amortie avec une décroissance logarithmique de l’énergie de la solution. La preuve de ce résultat est réalisée au moyen d’une estimation de Carleman pour les opérateurs elliptiques d’ordre quatre avec les conditions au bord dites de Lopatinskii-Sapiro et d’une estimation de la résolvante pour le générateur du semigroupe de la plaque amortie associé à ces conditions aux limites. La dérivation des inégalités de Carleman passe d’abord par des estimations microlocales, puis par des estimations locales, et enfin par une estimation globale.