Seminars

Partial differential equations seminars in Metz and Nancy

The seminars take place
– Fridays from 11am to 12pm, Seminar room, IECL Metz
– Tuesdays from 10:45 to 11:45 am, Conference room, IECL Nancy

During this period, until further notice, the seminars will take place in our virtual room on Zoom, at this link. The organizers of the seminars are : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Julie Valein (Nancy) and Ilaria Lucardesi (Nancy).

Upcoming presentations

Anne-Sophie de Suzzoni (Polytechnique)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anne-Siphie de Suzzoni (Polytechnique) Résumé :

Jérôme Le Rousseau (Université Paris Nord)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérôme Le Rousseau (Université Paris Nord) Résumé :

Anisa Chorwadwala (IISER, India)

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 June 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anisa Chorwadwala (IISER, India) Résumé :

Karol Bołbotowski (Université de Varsovie)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 June 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Karol Bołbotowski (Université de Varsovie) Résumé :

Viet Dang Nguyen (Université de Strasbourg)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 June 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Viet Dang Nguyen (Université de Strasbourg) Résumé :

Xavier Lamy (Université de Toulouse)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 24 June 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Xavier Lamy (Université de Toulouse) Résumé :

Past presentations

Preuve du "crack initiation" + comportement asymptotique au voisinage d'une fissure

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 January 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie / Antoine Lemenant Résumé :

Ce deuxième exposé du groupe de travail se fera en 2 parties. Dans une première partie Camille L. exposera (les idées principales) de la preuve du théorème de A. Chambolle, A. Giacomini et M. Ponsiglione à propos de “l’initiation soudaine d’une fissure”, et dans une deuxième partie, Antoine L. fera un court résumé d’un travail ancien en collaboration avec Antonin Chambolle et J-F Babadjian sur l’analyse asymptotique d’une solution d’EDP elliptique au voisinage d’une fissure non lisse (seulement rectifiable et connexe). Cette deuxième partie est en lien avec la notion “d’Energy release rate” évoqué par Camille L. dans son premier exposé, mais pourra être suivie de façon totalement indépendante du reste.


Groupe de Travail : Échelles dégénérées pour les potentiels de simple couche harmoniques et biharmoniques (1/2)

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 10 January 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Alexandre Munnier Résumé :

Estimées L^p sur des variétés compactes avec métriques non lisses

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :

Dans cet exposé, on s’intéresse à des inégalités fonctionnelles pour les systèmes de fonctions orthonormées en norme L^p. Le défi majeur consiste à prouver une dépendance optimale sur le nombre de fonctions impliquées. Nous nous concentrerons sur une famille d’inégalités appelées estimées « spectral cluster », qui concernent les combinaisons linéaires de fonctions propres de l’opérateur de Laplace-Beltrami sur des variétés riemanniennes compactes. Une version a été établie par R. Frank et J. Sabin dans le cadre de métriques lisses, généralisant les travaux fondateurs de Sogge des années 80. Nous verrons comment prouver de telles estimées en plus basse régularité. Il s’agit d’un travail en collaboration avec Jean-Claude Cuenin (University of Loughborough).


Evolution en temps des fissures

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 January 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :
Le but de cet exposé est de présenter la formulation mathématique de la propagation des fissures. Je commencerai pas présenter le modèle développé par Griffith dans les années 20 et ses défaults (il ne permet pas d’initier une fracture ou de prédire la direction qu’elle va prendre). Je présenterai ensuite le modèle introduit par Francfort et Marigo dans les années 90. On verra que ce modèle permet l’initialisation des fractures, et parfois même une initialisation brutale d’après un résultat de Chambolle, Giacomini et Ponsiglione.

Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :

Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.

Travail en collaboration avec Hannes Kern (TU Berlin).


Applications harmoniques minimisantes avec ancrage tangentiel

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 December 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

Motivés par des expériences avec des gouttes de cristaux liquides nématiques, nous étudions les applications harmoniques qui apparaissent comme des minimiseurs de l’approximation à une constante de l’énergie d’Oseen-Frank avec une condition au bord tangentielle. Dans la première partie de l’exposé, nous étudions la régularité des minimiseurs proches de la frontière par une méthode d’extension-réflexion. Dans la deuxième partie, je présenterai quelques résultats concernant la symétrie des minimiseurs et la localisation des défauts qui peuvent survenir. L’exposé est basé sur un travail commun avec Lia Bronsard et Andrew Colinet.


An ε-regularity theorem for an optimal design problem with perimeter penalization

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :


Applications harmoniques minimisantes avec ancrage tangentiel

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 December 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :
Motivés par des expériences avec des gouttes de cristaux liquides nématiques, nous étudions les applications harmoniques qui apparaissent comme des minimiseurs de l’approximation à une constante de l’énergie d’Oseen-Frank avec une condition au bord tangentielle. Dans la première partie de l’exposé, nous étudions la régularité des minimiseurs proches de la frontière par une méthode d’extension-réflexion. Dans la deuxième partie, je présenterai quelques résultats concernant la symétrie des minimiseurs et la localisation des défauts qui peuvent survenir. L’exposé est basé sur un travail commun avec Lia Bronsard et Andrew Colinet.

Control results for the KdV equation on networks

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Parada (Université de Toulouse) Résumé :

The Korteweg-de Vries (KdV) equation was introduced as a model to describe the propagation of long water waves in a channel. This nonlinear third-order dispersive equation has been extensively studied in the past years from different perspectives, particularly its controllability and stabilization properties. In this talk, we focus on the KdV equation posed in a star network. We present controllability and exponential stability results achieved by acting on a reduced number of branches in various configurations (delay, saturation, unbounded branches). This talk is based on joint works with E. Crépeau, C. Prieur,R. A. Capistrano-Filho and J. S. da Silva.


Séminaire : Améliorer la stabilité et la précision des schémas Galerkin Discontinu à l’aide de réseaux de neurones

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 November 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Laurent Navoret (Université de Strasbourg) Résumé :

La méthode Galerkin Discontinu permet d’approcher numériquement de façon très précise les solutions régulières des équations hyperboliques. Il est par contre plus délicat d’approcher des solutions discontinues ou des solutions perturbations autour de solutions stationnaires (pour des équations avec termes sources).

En effet, dans le premier cas, les oscillations de Gibbs générées aux discontinuités peuvent déstabiliser le schéma, tandis que dans le deuxième cas, l’erreur produite sur la solution stationnaire rend difficile l’étude des dynamiques perturbatives. Nous verrons dans cet exposé comment les réseaux de neurones peuvent être utilisés pour construire des viscosités artificielles qui stabilisent les schémas numériques et comment elles permettent de construire des bases Galerkin Discontinu adaptées aux solutions stationnaires du problème.


1 2 3 4 5 6 7 8 9 10 11 12