Partial differential equations seminars in Metz and Nancy
The seminars take place
– Fridays from 11am to 12pm, Seminar room, IECL Metz
– Tuesdays from 10:45 to 11:45 am, Conference room, IECL Nancy
During this period, until further notice, the seminars will take place in our virtual room on Zoom, at this link. The organizers of the seminars are : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Julie Valein (Nancy) and Ilaria Lucardesi (Nancy).
Upcoming presentations
Séminaire: Convection-dominated transport problems in thin graph-like networks
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 5 December 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Taras Mel'nyk Résumé :The lecture addresses time‑dependent convection–diffusion problems with high Péclet number in thin 3D graph‑like networks of curvilinear cylinders connected by nodes of diameter $\mathcal{O}(\varepsilon).$ Inhomogeneous Robin boundary conditions with different intensity factors are imposed on the network boundary. As $\varepsilon \rightarrow 0,$ the network collapses to a graph and the diffusion terms vanish.
Such problems pose singular‑perturbation challenges that standard methods often cannot resolve. I present a systematic asymptotic framework for $\varepsilon \rightarrow 0,$ combining regular expansions on edges with node‑layer and boundary‑layer asymptotics to capture the multiscale flow structure. The analysis justifies reduced graph models, quantifies higher‑order corrections, and uncovers new phenomena in singular regimes.
Problème de contrôle optimal avec contraintes d’état en chimiothérapie anticancéreuse et optimisation du traitement
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 December 2025 09:15-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David LASSOUNON Résumé :Le succès de la chimiothérapie dépend à la fois de la stratégie d’administration du médicament et de sa capacité à éliminer les cellules cancéreuses tout en préservant autant que possible les tissus sains. Dans cette présentation, nous nous intéresserons à un problème de contrôle optimal avec des contraintes d’état appliqué à la chimiothérapie des tumeurs invasives, où la dose de médicament agit comme variable de contrôle. Étant donné que le traitement affecte à la fois les cellules tumorales et les tissus sains, l’objectif du
problème de contrôle est de réduire la densité tumorale en contrôlant la dose du médicament. Pour ce faire, nous modélisons l’action thérapeutique à l’aide d’une équation de réaction-diffusion non linéaire décrivant l’évolution d’une tumeur invasive sous traitement. Nous commençons par analyser mathématiquement le problème initial de valeur limite. Nous formulons ensuite le problème de contrôle optimal sous contraintes et en déduisons les conditions nécessaires à l’optimalité. Enfin, à l’aide de simulations numériques en 2D pour un cas de cancer du sein, nous illustrons l’importance des contraintes d’état dans les stratégies de traitement optimales, avant de conclure par quelques perspectives
Régularité d'un problème à frontière libre d'ordre 4
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 December 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickael Nahon Résumé :Je vais présenter un problème d’optimisation à frontière libre analogue au problème de Alt-Caffarelli pour les fonctions biharmoniques. Ce problème apparaît dans différentes questions d’optimisation de forme, dont la minimisation de la trainée d’un obstacle dans un fluide sous contrainte de mesure, la minimisation de la première valeur propre de l’opérateur de Stokes (ou de flambage) dans les domaines du plan, etc.. On s’attend à ce que la frontière libre obtenue soit généralement une union de courbes lisses, pouvant se rejoindre avec un angle d’environ 1.43pi, et je présenterai plusieurs résultats allant dans ce sens.
C’est un travail en collaboration avec Jimmy Lamboley.
Séminaire: titre à venir
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 19 December 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Vincent Laheurte (Institut de Mathématiques de Bordeaux) Résumé :Résumé à venir
Romeo LEYLEKIAN
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Romeo LEYLEKIAN Résumé :Laure GIOVANGIGLI
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laure GIOVANGIGLI Résumé :Lucas COEURET
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas COEURET Résumé :Marc PEGON
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marc PEGON Résumé :Nicolas VANSPRANGHE
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas VANSPRANGHE Résumé :Benoit MERLET
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoit MERLET Résumé :Camille LAURENT
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille LAURENT Résumé :Past presentations
Applications harmoniques minimisantes avec ancrage tangentiel
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 December 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :Control results for the KdV equation on networks
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Parada (Université de Toulouse) Résumé :The Korteweg-de Vries (KdV) equation was introduced as a model to describe the propagation of long water waves in a channel. This nonlinear third-order dispersive equation has been extensively studied in the past years from different perspectives, particularly its controllability and stabilization properties. In this talk, we focus on the KdV equation posed in a star network. We present controllability and exponential stability results achieved by acting on a reduced number of branches in various configurations (delay, saturation, unbounded branches). This talk is based on joint works with E. Crépeau, C. Prieur,R. A. Capistrano-Filho and J. S. da Silva.
Séminaire : Améliorer la stabilité et la précision des schémas Galerkin Discontinu à l’aide de réseaux de neurones
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 November 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Laurent Navoret (Université de Strasbourg) Résumé :La méthode Galerkin Discontinu permet d’approcher numériquement de façon très précise les solutions régulières des équations hyperboliques. Il est par contre plus délicat d’approcher des solutions discontinues ou des solutions perturbations autour de solutions stationnaires (pour des équations avec termes sources).
En effet, dans le premier cas, les oscillations de Gibbs générées aux discontinuités peuvent déstabiliser le schéma, tandis que dans le deuxième cas, l’erreur produite sur la solution stationnaire rend difficile l’étude des dynamiques perturbatives. Nous verrons dans cet exposé comment les réseaux de neurones peuvent être utilisés pour construire des viscosités artificielles qui stabilisent les schémas numériques et comment elles permettent de construire des bases Galerkin Discontinu adaptées aux solutions stationnaires du problème.
Controllability of some wave equations
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 November 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thomas Perrin (ENS Rennes) Résumé :In this talk, I will present controllability results for some linear and non-linear wave equations. The linear equations will be vector-valued and at different levels of regularity. I will give the main ideas of the proof of a change of regularity result. For the non-linear equations, I will consider the case of the focusing cubic Klein-Gordon equation. I will state a local controllability result around a regular solution, and a null-controllability result for scattering solutions. In the presence of damping, I will give both a positive and a negative stabilization result. I will also provide some ideas of proofs.
Séminaire : Principe d'action spectrale pour l'opérateur de Dirac Lorentzien
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 22 November 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Nguyen Viet Dang (Université de Strasbourg) Résumé :Ceci est un travail en commun avec Andras Vasy et Michal Wrochna.
On considère $\mathbb{R}^n$ munit d’une métrique Lorentzienne asymptotiquement Minkowski dont les géodésiques nulles sont non captées. On décrira les propriétés spectrales du carré de l’opérateur de Dirac associé et on en déduira un principe d’action spectrale à partir des puissances de $D^2$.
Limiting behavior of minimizing p-harmonic maps in 3d as p goes to 2 with finite fundamental group.
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 19 November 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bohdan Bulanyi (Université de Bologne) Résumé :The presentation will focus on some new results concerning the limiting behavior of minimizing $p$-harmonic maps from a bounded Lipschitz domain $\Omega \subset \mathbb{R}^{3}$ to a compact connected Riemannian manifold without boundary and with finite fundamental group as $p \nearrow 2$. We prove that there exists a closed set $S_{*}$ of finite length such that minimizing $p$-harmonic maps converge to a locally minimizing harmonic map in $\Omega \setminus S_{*}$. We prove that locally inside $\Omega$ the singular set $S_{*}$ is a finite union of straight line segments, and it minimizes the mass in the appropriate class of admissible chains. Furthermore, we establish local and global estimates for the limiting singular harmonic map. Under additional assumptions, we prove that globally in $\overline{\Omega}$ the set $S_{*}$ is a finite union of straight line segments, and it minimizes the mass in the appropriate class of admissible chains, which is defined by a given boundary datum and $\Omega$. In this talk, I will try to give an overview of these results. This is a joint work with Jean Van Schaftingen and Benoît Van Vaerenbergh.
Alexandre Munnier
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 19 November 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alexandre Munnier Résumé :TBA
Stabilisation des ondes non-linéaires : cas non uniformes
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 November 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Romain Joly (Institut Fourier) Résumé :Dans cet exposé, nous discuterons de la convergence vers 0 des solutions de l’équation des ondes amorties non-linéaire. Dans le cas où l’amortissement agit dans une zone vérifiant la “condition de contrôle géométrique”, les solutions de l’équation linéaire tendent uniformément et exponentiellement vite vers 0. Il existe de nombreux travaux montrant que cette convergence se transmet presque toujours à l’équation avec une non-linéarité. Quand la “condition de contrôle géométrique” n’est pas vérifiée, la décroissance du semigroupe linéaire n’est plus uniforme. Plusieurs géométries ont été étudiées, donnant lieu à différentes vitesses de décroissance. Le but de l’exposé sera de discuter de ces situations pour l’équation non-linéaire, ce qui reste un domaine très ouvert. Il s’agit d’un travail en collaboration avec Camille Laurent.
Alexandre Munnier
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 November 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alexandre Munnier Résumé :TBA
Problème de résonances inverse sur un cylindre hyperbolique infini perturbé.
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 November 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Valentin Arrigoni (Université de Franche-Comté) Résumé :Nous étudions un problème de résonance inverse sur un cylindre hyperbolique infini perturbé radialement et de manière compacte. En utilisant les symétries de ce type de géométrie, nous sommes amenés à étudier une équation de Schrödinger stationnaire sur la droite réelle avec un potentiel V, qui est la somme d’un potentiel de Pöschl-Teller et d’une perturbation que nous considérons intégrable et à support compact. Nous définissons les résonances comme les pôles des coefficients de réflexion avec une partie imaginaire négative. Nous prouvons que, sous certaines hypothèses sur le support de la perturbation compacte, nous sommes capables de résoudre la question de l’unicité dans le problème de résonance inverse. Nous donnons également des asymptotiques des résonances et montrons qu’elles sont asymptotiquement localisées sur deux branches logarithmiques et, selon la localisation du support de q, parfois aussi sur des lignes parallèles à l’axe imaginaire.