Seminars

Partial differential equations seminars in Metz and Nancy

The seminars take place
– Fridays from 11am to 12pm, Seminar room, IECL Metz
– Tuesdays from 10:45 to 11:45 am, Conference room, IECL Nancy

During this period, until further notice, the seminars will take place in our virtual room on Zoom, at this link. The organizers of the seminars are : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Julie Valein (Nancy) and Ilaria Lucardesi (Nancy).

Upcoming presentations

Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 January 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Ngoc Nhi Nguyen (Université de Milan)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :

Groupe de Travail : Échelles dégénérées pour les potentiels de simple couche harmoniques et biharmoniques (1/2)

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 10 January 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Alexandre Munnier Résumé :

Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 January 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Idriss Mazari (Université Paris-Dauphine)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :

Groupe de Travail : Échelles dégénérées pour les potentiels de simple couche harmoniques et biharmoniques (2/2)

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 17 January 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Alexandre Munnier Résumé :

Raphaël Côte (Université de Strasbourg)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :

Groupe de Travail : Titre à venir (brouillon)

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 February 2025 10:45-12:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Tillmann Wunzbacher Résumé :

Attention : horaires inhabituels, le séminaire aura lieu de 10h45 à 12h15 (une séance d’une heure et demie) et sera précédé d’une pause café-gâteau de 10h15 à 10h45


Didier Bresch (Université de Savoie)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 February 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :

Pei Su (Université d'Orsay)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 11 March 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pei Su (Université d'Orsay) Résumé :

Séminaire : Titre à venir

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 March 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Gaudiello (Università della Campania “L. Vanvitelli”) Résumé :

Pierre Rouchon (Mines Paris)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 March 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :

Séminaire : Titre à venir

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 21 March 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Olivier Guibé (Université de Rouen) Résumé :

Jérôme Le Rousseau (Université Paris Nord)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 March 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérôme Le Rousseau (Université Paris Nord) Résumé :

Journées EDP de l'IECL 2025

Catégorie d'évènement : Conférence Date/heure : 2 April 2025 - 4 April 2025 14:00-13:00 Lieu : Description

L’édition 2025 des Journées EDP de l’IECL aura lieu du mercredi 2 avril vers 14h au vendredi 4 avril vers 12h30.

Cette conférence aura lieu à Metz, à l’UFR MIM, campus du Technopole.

D’autres informations seront disponibles sur le page web de la conférence, accessible en cliquant sur ce lien.


Past presentations

Peut-on entendre la forme d’une pièce ?

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 30 January 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Tom Sprunck (Université de Strasbourg) Résumé :

Depuis son introduction par Allen et Berkley en 1972, la méthode des
sources images est l’une des techniques les plus populaires pour la
modélisation des réponses impulsionnelles (RIR) en acoustique des
salles. Cette méthode modélise chaque réflexion d’une impulsion sonore
sur les murs d’une pièce rectangulaire (ou polyédrique) comme une source
impulsionnelle de type Dirac, obtenue à partir de critères géométriques
simples. Quelques travaux récents étudient l’estimation de la forme
d’une pièce tridimensionnelle en exploitant les temps d’arrivée des
échos dans l’enregistrement de la réponse impulsionnelle de salle.
Différentes limitations apparaissent dans ce type de méthode, notamment
la localisation temporelle des échos et leur labellisation. La méthode
présentée dans cet exposé permet la reconstruction des positions 3D des
sources images sans labellisation préalable des réflexions. Le problème
inverse est posé comme un problème convexe en dimension infinie de
reconstruction parcimonieuse en 3D des sources images, l’opérateur
linéaire d’observation à inverser faisant intervenir la solution de
l’équation des ondes avec un terme source mesure. Les dimensions d’une
pièce rectangulaire peuvent ensuite être estimées précisément à l’aide
du nuage de sources images ainsi reconstruites. L’exposé se conclura par
la présentation d’une approche alternative en cours de développement
basée sur l’optimisation de forme et la méthode des solutions
fondamentales, qui devrait permettre de dépasser le cas des pièces
rectangulaires.


Séminaire : Spectral Stability in the nonlinear Dirac equation with Soler-type nonlinearity

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 26 January 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Julien Ricaud (Ecole Polytechnique) Résumé :

This talk concerns the (generalized) Soler model: a nonlinear (massive) Dirac equation with a nonlinearity taking the form of a space-dependent mass. The equation admits standing wave solutions and they are generally expected to be stable (i.e., small perturbations in the initial conditions stay small) based on numerical simulations. However, contrarily to the nonlinear Schrödinger equation for example, there are very few results in this direction. The results that I will discuss concern the simpler question of spectral stability (and instability), i.e., the absence (or presence) of exponentially growing solutions to the linearized equation around a solitary wave. As in the case of the nonlinear Schrödinger equation, this is equivalent to the presence or absence of “unstable eigenvalues” of a non-selfadjoint operator with a particular block structure. I will highlight the differences and similarities with the Schrödinger case, present some results for the one-dimensional case, and discuss open problems.

This is joint work with Danko Aldunate, Edgardo Stockmeyer, and Hanne Van Den Bosch.


Observateurs adaptatifs pour l'équation des ondes et leurs discrétisations associées : formulation et analyse

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 23 January 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Tiphaine Delaunay (Inria Paris) Résumé :
Le contexte de cette présentation est l’étude de problèmes inverses pour les phénomènes de propagation d’onde sous l’angle de la théorie du contrôle, plus précisément la théorie de l’observation. Notre objectif est de formaliser, d’analyser et de discrétiser des stratégies appelées séquentielles en assimilation de données, où les observations sont prises en compte à mesure qu’elles sont disponibles. Le système résultant appelé observateur (ou estimateur séquentiel) se stabilise sur la trajectoire observée reconstruisant alors l’ état et éventuellement des paramètres inconnus du système. Ici nous nous concentrons plus particulièrement sur la reconstruction de source au second membre d’une équation des ondes, un problème d’estimation qui peut apparaître comme intermédiaire en compléxité entre l’estimation d’ état (ou de condition initiale) et l’identification de paramètres généraux. Dans ce cadre, nous proposons de définir dans un formalisme déterministe en dimension infinie, un estimateur dit de Kalman qui estime séquentiellement le terme source à identifier. Par les outils de programmation dynamique, nous montrons que cet estimateur séquentiel est équivalent à la minimisation d’une fonctionnelle, cette équivalence nous permettant d’en proposer l’analyse de convergence sous condition d’observabilité. Nous démontrons alors des inégalités d’observabilité pour différents types de source en combinant analyse fonctionnelle, méthodes des multiplicateurs et estimations de Carleman. Ces inégalités nous informent notamment sur le caractère éventuellement mal-posé des problèmes inverses de reconstruction que nous étudions et nous permettent d’en quantifier le degré et ainsi d’adapter les régularisation proposées. Concernant les questions de discrétisation et leur analyse numérique, nous défendons l’idée de redéfinir ces observateurs associés à la minimisation de la fonctionnelle une fois que le modèle direct a été discrétisé. Cette approche discrétiser-puis-optimiser est avantageuse pour l’analyse par rapport à optimiser-puis-discrétiser. Il n’en reste pas moins que les inégalités d’observabilité doivent être étendues aux systèmes discrets. A ce propos, nous étendons en particulier des résultats de stabilisation exponentielle uniforme en la discrétisation pour des discrétisations par éléments finis de haut degré de l’équation des ondes.

Pammella Queiroz - Limite asymptotique et stabilité d’un système élastique

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 23 January 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pammella Queiroz Résumé :

En 1988, Lagnese-Lions a supposé que la limite asymptotique du système Mindlin-Timoshenko converge vers le système Von-Kármán. De là, une série d’articles liés à cette conjecture ont été publiés, et bien que plusieurs progrès aient été réalisés, nous n’avons jusqu’à présent que des réponses partielles à ce problème. L’objectif de mon exposé est de discuter de quelques résultats sur les propriétés asymptotiques du célèbre système de Mindlin-Timochenko, qui décrit la vibration des poutres et des plaques lorsque le module d’élasticité de torsion tend vers l’infini, donnant une réponse définitive à la conjecture de Lagnese-Lions. En outre, j’ai l’intention de répondre à d’autres questions importantes sur la stabilité asymptotique du système, en généralisant certains résultats connus.


Séminaire : Scattering Resonances in Two-Dimensional Transparent Cavities

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 19 January 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Zoïs Moitier (ENSTA, Paris) Résumé :

This talk explores the intriguing realm of scattering resonances within two-dimensional transparent cavities, which arose in the modeling of micro-resonators constructed from dielectric materials (with positive permittivity) or metallic nanoparticles (with negative permittivity). Specifically, our investigation is focused on resonances that closely align with the real axis, characterized by highly oscillatory behavior and localization along the interface separating the cavity from its external environment. Notable exemplars of such resonances include whispering-gallery modes observed in dielectric cavities and surface plasmon waves associated with metallic particles.


Numerical solution of Poisson partial differential equation in high dimension using two-layer neural networks

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 January 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mathias Dus Résumé :

The aim of this article is to analyze numerical schemes using two-layer neural networks with infinite width for the resolution of the high-dimensional Poisson partial differential equation (PDE) with Neumann boundary condition. Using Barron’s representation of the solution with a probability measure defined on the set of parameter values, the
energy is minimized thanks to a gradient curve dynamic on the 2-Wasserstein space of the set of parameter values defining the neural network. Inspired by the work from Bach and Chizat, we prove that if the gradient curve converges, then the represented function is the solution of the elliptic equation considered. In contrast to previous works, the activation function we use here is not assumed to be homogeneous to obtain global convergence of the flow. Numerical experiments are given to show the potential of the method.


Blaise Colle - Introduction à la platitude différentielle pour le contrôle des EDPs

Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 16 January 2024 09:15-09:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Blaise Colle Résumé :

La platitude différentielle est une propriété intrinsèque de certain systèmes dynamiques (EDO,EDP). Un
système est dit différentiellement plat si l’on peut paramétrer ses trajectoires par une fonction et ses dérivées,
appelée sortie plate. Cette propriété peut être exploitée pour prouver la contrôlabilité de certains systèmes.
Je commencerai par introduire la méthode en dimension finie puis je montrerai comment on peut l’exploiter
pour démontrer la contrôlabilité à 0 de l’équation de la chaleur en une dimension d’espace. Dans la seconde
moitié de cet exposé, je présenterai certain travaux issus de ma thèse exploitant cette propriété. Il pourra
s’agir de résultats de contrôlabilité sur des systèmes d’EDP-EDO à frontière libre où l’on souhaite garantir
certaines contraintes physiques de signe ou des résultats de contrôlabilité pour des systèmes d’équations de
la chaleur en cascade.


Séminaire : Finite Volumes for quantum fluids

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 12 January 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Quentin Chauleur (Université de Lille) Résumé :

In this talk, we will be interested in the numerical analysis of the Gross-Pitaevskii equation, which governs the evolution of quantum fluids near absolute zero temperature. We will use an explicit splitting scheme for time integration, while relying on a standard Finite Volumes scheme for space discretization. Numerical simulations will also be presented, with a particular emphasis on the analysis of vortex structures which naturally appear in such superfluids.


Maximisation des valeurs propres du Laplacien avec condition de Neumann

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 January 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Eloi Martinet (Université Savoie Mont Blanc) Résumé :

On s’intéresse au problème d’optimisation de formes consistant à maximiser les valeurs propres du Laplacien avec conditions de Neumann homogènes. Ces valeurs propres interviennent notamment dans des problèmes acoustiques ou thermiques et sont en particulier liées à la “hot spot conjecture”. Contrairement aux valeurs propres de Dirichlet, celles associées au problème de Neumann sont de nature plutôt instable, ce qui rend le problème d’optimisation difficile. On verra comment certaines explorations numériques du problème pour des domaines du plan et de la sphère ont permis de mettre en évidence certaines propriétés des optima.

En fin de présentation, on fera une petite digression sur la capacité d’un réseau de neurones à apprendre les valeurs propres d’un opérateur.


Blaise Colle - Introduction à la platitude différentielle pour le contrôle des EDPs

Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 9 January 2024 09:15-09:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Blaise Colle Résumé :

La platitude différentielle est une propriété intrinsèque de certain systèmes dynamiques (EDO,EDP). Un
système est dit différentiellement plat si l’on peut paramétrer ses trajectoires par une fonction et ses dérivées,
appelée sortie plate. Cette propriété peut être exploitée pour prouver la contrôlabilité de certains systèmes.
Je commencerai par introduire la méthode en dimension finie puis je montrerai comment on peut l’exploiter
pour démontrer la contrôlabilité à 0 de l’équation de la chaleur en une dimension d’espace. Dans la seconde
moitié de cet exposé, je présenterai certain travaux issus de ma thèse exploitant cette propriété. Il pourra
s’agir de résultats de contrôlabilité sur des systèmes d’EDP-EDO à frontière libre où l’on souhaite garantir
certaines contraintes physiques de signe ou des résultats de contrôlabilité pour des systèmes d’équations de
la chaleur en cascade.


1 2 3 4 5 6 7 8 9 10 11 12