Complex geometry seminar

Upcoming presentations

Curvature equations and stabilities of holomorphic vector bundles

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 December 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Scarpa Résumé :

A fundamental result in Complex Geometry is the Kobayashi-Hitchin correspondence, stating that a holomorphic vector bundle on a Kähler manifold is poly-stable (as defined by Mumford, Takemoto) if and only if it admits a Hermitian metric solving the Hermite-Einstein equation. It has now become clear that there exist many possible different stability notions for vector bundles, that are of great interest in Algebraic Geometry and String Theory. It is natural to wonder if these stabilities are also tied to the existence of Hermitian metrics with special curvature properties. In this talk, based on joint work with Julien Keller (arXiv:2405.03312[math.DG]), we will consider a class of “polynomial” equations for the curvature of rank 2 holomorphic vector bundles on compact projective surfaces, and a corresponding class of polynomial stability conditions for these bundles. We will then explain how each of these stability conditions is related to the existence of a Hermitian metric satisfying the corresponding equation. This refines and partially confirms a conjectural correspondence between Bridgeland stability conditions and PDEs on holomorphic vector bundles, formulated by Dervan, McCarthy, and Sektnan.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 January 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 February 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 March 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Abonnement iCal

Past presentations

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 December 2024 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazottes Résumé :

Formalisme thermodynamique à basse température, dynamique symbolique et quasi-cristaux

L’étude de modèles simples de physique statistique sur le réseau $\mathbb{Z}^d$, visant à comprendre la transition du désordre vers un ordre périodique ou quasi-périodique quand la température est suffisamment basse, nécessite une interconnexion entre le formalisme des mesures de Gibbs et des états d’équilibre, la dynamique symbolique multidimensionnelle, les pavages et l’informatique théorique. En particulier, des espaces associés aux marginales finies-dimensionnelles des mesures invariantes par décalage apparaissent et possèdent une étonnante richesse. Cet exposé se propose de présenter un panorama introductif de ce domaine de recherche.


The BNS sets of fundamental groups of complex algebraic varieties

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 November 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vasily Rogov Résumé :

The BNS set of a finitely generated group $\Gamma$ is a certain canonical subset of the space of real additive characters on $\Gamma$. It is a subtle invariant of the group that naturally comes up in different questions of geometric and homological group theory. In the case when $\Gamma$ is the fundamental group of a compact Kähler manifold $X$, Thomas Delzant found a beautiful description of its BNS set in terms of holomorphic fibrations of $X$ over hyperbolic orbifold curves. Using it, he showed that if the fundamental group of a compact Kähler manifold is virtually solvable, it is in fact virtually nilpotent. I will explain the main ideas behind Delzant’s proof and how to generalise his theorems to the case when $X$ is a smooth complex quasi-projective variety. Time permitting, I will also discuss some applications and the case of quasi-Kähler manifolds.


séminaire géométrie complexe et groupes algébriques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 18 November 2024 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Raphael Appenzeller Résumé :

Title: Affine buildings from real algebraic geometry

Abstract: The theory of symmetric spaces and the theory of buildings have a rich history of parallels and interactions. We describe symmetric spaces in terms of real algebraic geometry and then replace the real numbers by valued real closed fields to construct an affine Λ-building. A key tool is a transfer principle from model theory.


Lines, twisted cubics on cubic fourfolds and the monodromy of the Voisin map

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 13 November 2024 15:00-16:00 Lieu : Salle Döblin Oratrice ou orateur : Franco Giovenzana (Orsay) Résumé :

Abstract: Galois groups have a long history in enumerative geometry, encoding the intrinsic symmetries of enumerative problems. In this talk, after revisiting the core properties of enumerative Galois groups and their connections with monodromy, we focus on the Fano variety F of lines on a cubic fourfold Y, a hyperkähler fourfold, and investigate the monodromy of the Voisin map, a degree 16 self-rational map of F. We show that its Galois group is “as large as possible”, and, in doing so, delve into the geometry of the LLSvS variety—a hyperkähler manifold parameterizing twisted cubics on Y. This is based on joint work with L.Giovenzana.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 4 November 2024 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire de groupes algébriques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 21 October 2024 14:00-15:00 Lieu : Oratrice ou orateur : Pierre-Emmanuel Chaput Résumé :
Titre : Bidilatations des coefficients de Littlewood-Richardson
Résumé : Les coefficients de Littlewood-Richardson évaluent la dimension de l’espace des invariants dans le produit tensoriel de 3 représentations irréductibles de GL_n.
Ces représentations sont paramétrées par des partitions. Etant donnée une partition, on peut multiplier ses parts par un entier p, et recopier chacune de ses parts un nombre fini de fois, disons q. Une conjecture de Fulton, démontrée, indique que si on a un triplet de partitions qui donne un coefficient de Littlewood-Richardson égal à 1, alors il en est de même pour les partitions obtenues en appliquant conjointement les deux dilatations ci-dessus. D’autres résultats indiquent ce qui se passe en partant d’un coefficient égal à 2 et en appliquant l’une ou l’autre des dilatations : nous obtenons l’entier p+1 (ou q+1). Je montrerai plus généralement qu’en appliquant conjointement les deux dilatations, nous obtenons le coefficient binomial (p+q,q).
L’étude des sections invariantes est équivalente à l’étude d’un quotient GIT associé, et ce résultat est obtenu en montrant que le quotient GIT associé aux partitions dilatées verticalement q fois est l’espace projectif P^q, dont l’espace des sections de O(p) a comme dimension le coefficient binomial indiqué.

La conjecture standard de type Lefschetz pour certaines fibrations lagrangiennes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 14 October 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mattia Cavicchi Résumé :

Quand X est une variété complexe projective lisse, de dimension d, l’i-ème itéré du cup-produit avec une section hyperplane induit un isomorphisme entre les espaces de cohomologie singulière H^(d-i)(X) et H^(d+i)(X). La conjecture standard de type Lefschetz pour X, formulée par Grothendieck dans les années 60 et encore largement ouverte, prédit que les inverses de ces isomorphismes devraient être induits par des cycles algébriques sur X \times X. Dans cet exposé, après une introduction à ces idées, je parlerai de travaux récents avec Ancona, Laterveer et Saccà, dans lesquels nous démontrons la conjecture pour certaines variétés hyperkähleriennes munies d’une fibration lagrangienne. De nouvelles idées nous permettent en fait de traiter certaines fibrations où les fibres ne sont pas toutes irréductibles, ainsi éliminant l’une des hypothèses les plus restrictives faites dans notre premier article.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 7 October 2024 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Formes modulaires et cônes de diviseurs de Noether-Lefschetz

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 30 September 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pietro Beri Résumé :

Dans cet exposé, je parlerai de cônes de diviseurs de Noether-Lefschetz sur des variétés modulaires orthogonales, notamment sur les espaces de modules des surfaces K3 quasi-polarisées. Au cours des dernières années, les travaux de nombreux auteurs ont exploré la relation de ces diviseurs avec certaines formes modulaires à valeurs vectorielles : je décrirai comment cette relation peut être utilisée pour donner des descriptions explicites des cônes de diviseurs. Il s’agit d’un travail en collaboration avec Ignacio Barros, Laure Flapan et Brandon Williams.


Holomorphic Euler characteristic and big fundamental groups

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 September 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ya Deng Résumé :

In 1995 Kollár conjectured that the Euler characteristic $\chi(K_X)\geq 0$ for any complex projective manifold $X$ having big fundamental groups. In a recent joint work with Botong Wang we prove Kollár’s conjecture if $\pi_1(X)$ is linear. I will explain the proof in the talk, which is based on $L^2$-vanishing theorems, together with techniques in the linear Shafarevich conjecture and geometry of mixed period maps.


1 2 3 4 5 6 7 8 9 10 11 12