Upcoming presentations
Grands ensembles évitant certaines configurations
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 24 April 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Alexandre Bailleul (ENS Paris-Saclay) Résumé :En se laissant guider par l’exemple des ensembles de Sidon (ensembles de nombres dont les sommes de deux éléments sont uniques, très étudiés en combinatoire additive), je présenterai des résultats récents, en collaboration avec R. Riblet, où des techniques de théorie des ensembles permettent de construire des ensembles “grands” en certains sens (cardinalité, mesure ou dimension) tout en étant “épars” car évitant des configurations prescrites (pas de relation linéaire, ou ne contenant pas de parallélogramme, etc.). Des questions subtiles en lien avec l’axiome du choix seront évoquées.
Pseudogroups and geometric structures
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 May 2025 14:15-15:15 Lieu : Salle de réunion Metz (ARC-027) Oratrice ou orateur : Francesco Cattafi (Würzburg) Résumé :This philosophy can be made precise at various levels of generality (depending on the definition of “geometric structure”) and using different tools/methods. In this talk I will present some aspects of a new framework, which includes previous formalisms (e.g. G-structures or Cartan geometries) and allows us to prove integrability theorems.
A main novelty of this point of view consists of the fact that it uncovers the (beautiful!) hidden structures behind Lie pseudogroups and geometric structures. Indeed, the relevant objects which make this approach work are Lie groupoids endowed with a multiplicative “PDE-structure”, their principal actions, and the related Morita theory. Poisson geometry provides the guiding principle to understand those objects, which are directly inspired from, respectively, symplectic groupoids, principal Hamiltonian bundles, and symplectic Morita equivalence.
This is based on a forthcoming book written jointly with Luca Accornero, Marius Crainic and María Amelia Salazar.
A venir
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 May 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (CNRS, Lille) Résumé :Antonio Miti - titre à venir
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 June 2025 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Miti (Rome) Résumé :Past presentations
Calcul de classes d'isogénie de surfaces abéliennes sur
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz
Date/heure : 10 October 2024 14:30-15:30
Lieu : Salle Döblin
Oratrice ou orateur : Jean Kieffer (LORIA)
Résumé : Si l’on se fixe une variété abélienne définie sur un corps de nombre
Connes-Kasparov via the Casselman algebra and the Paley-Wiener theorem
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 10 October 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jacob Bradd Résumé :I will talk about a refinement of the Connes-Kasparov isomorphism, which is proved by understanding the structure of the Casselman algebra of rapidly decreasing functions on a real reductive group. I show that this Casselman algebra, which encodes nonunitary representation theory, and the reduced group C^*-algebra, which encodes tempered unitary representation theory, are built in very similar ways from similar elementary components. The structure of the Casselman algebra is understood using techniques from Delorme’s proof of the Paley-Wiener theorem for real reductive groups, which describes the Fourier transform of compactly supported smooth functions. Thanks to the similar structures of the two algebras, it becomes straightforward to prove that the two algebras, once cut down to certain finite sets of K-types, have isomorphic K-theory, which is the refinement of Connes-Kasparov. This work is essentially my thesis at Penn State.
Gaussian behaviour of small quadratic non-residues
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 26 September 2024 15:45-16:45 Lieu : Salle Döblin Oratrice ou orateur : Kunjakanan Nath (Université de Lorraine) Résumé :In this talk, we will discuss the Gaussian behaviour of small quadratic non-residues for almost all primes in short intervals. We will begin with some background on quadratic non-residues and then briefly outline the proof. The proof uses the method of moments in conjunction with sieve methods and algebraic inputs from counting solutions of polynomial equations. This is joint work with Debmalya Basak and Alexandru Zaharescu.
Reduction of (multi)-symplectic observables
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 20 June 2024 13:30-14:30 Lieu : Salle de séminaires Metz Oratrice ou orateur : Leonid Ryvkin (Lyon I) Résumé :Let
We present an approach to reducing the algebra of (multi-)symplectic observables for general (covariant) moment maps, without any regularity assumptions of the level sets (and the symmetries).
Based on joint work with Casey Blacker and Antonio Miti.
Equivariant quantizations of the positive nilradical and covariant differential calculi
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 June 2024 15:45-16:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Marco Matassa (Oslo Met) Résumé :We consider the problem of quantizing the positive nilradical of a complex semisimple Lie algebra of finite rank, together with a certain fixed direct sum decomposition. The decompositions we consider are in one-to-one correspondence with total orders on the simple roots, and exhibit the nilradical as a direct sum of graded modules for appropriate Levi factors. We show that this situation can be quantized equivariantly as a finite-dimensional subspace within the positive part of the corresponding quantized enveloping algebra. Furthermore, we show that such subspaces give rise to left coideals, with the possible exception of components corresponding to some exceptional Lie algebras, and this property singles them out uniquely. Finally, we discuss how to use these quantizations to construct covariant first-order differential calculi on quantum flag manifolds, which coincide with those introduced by Heckenberger-Kolb in the irreducible case.
La distribution des dérivées logarithmiques des fonctions L quadratiques en caractéristique positive
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 13 June 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Félix Baril Boudreau (Université du Luxembourg) Résumé :À chaque polynôme unitaire sans facteur carré
On the twisted Ruelle zeta function and the Ray-Singer metric
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 June 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Polyxeni Spilioti (Göttingen) Résumé :Dirac cohomology and -correspondence for complex dual pairs
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse
Date/heure : 4 June 2024 14:15-15:15
Lieu :
Oratrice ou orateur : Spyridon Afentoulidis-Almpanis (Bar-Ilan University, Israel)
Résumé : (Joint work with G. Liu and S. Mehdi)
For the last decades, representation theory of Lie groups and algebras has been a very active research topic with a multitude of ramifications and applications. Since the work, in the 1970’s, of Parthasarathy and Atiyah-Schmid, Dirac operators have become efficient tools to describe and classify the unitary dual of a real Lie a group
A useful functor in representation theory of reductive groups is the so-called
In this talk, we will study the behavior of the Dirac cohomology under the
pairs
The automorphism group of a field of generalised formal power series
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 30 May 2024 15:45-16:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Salma Kuhlmann (Universität Konstanz) Résumé :(Joint Work with Michele Serra.)
In his paper ” Automorphisms of fields of formal power series” (Bull. Am. Math. Soc. 50, 1944) Otto Schilling described the automorphism group of k((t)), the field of Laurent series with coefficients in a ground field k and exponents in the group of integers. In our paper “The automorphism group of a valued field of generalised formal power series” (J. Algebra 605, 2022) we generalise his results to the case when the exponents lie in an arbitrary abelian group. In particular, our results apply to a variety of such fields, e.g. to the field of Puiseux series, of multivariate rational functions, of multivariate Laurent series, or to the field of surreal numbers.
The talk will be self contained talk and geared towards a general audience.
Les nombres surréels de John Horton Conway et l'univers de John Von Neumann
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 30 May 2024 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Wolfgang Bertram (IÉCL) Résumé :Je proposerai une excursion aux “Fondements mathématiques” (dans le sens de l’intitulé d’une unité de notre L1 que j’étais amené à enseigner à Nancy pendant ces dernières années) : depuis le 19e siècle, la théorie des fondements des nombres et de l’analyse réels, et celle de la théorie des ensembles, se sont nourries mutuellement (Dedekind, Cantor,…). Au 20e siècle, cette interaction a pris un nouveau tournant : du coté théorie des ensembles, l’univers de von Neumann permet de sortir indemne de la “crise des fondements” ; du coté de la théorie des nombres, John Horton Conway proposa, dans son livre “On Numbers and Games” (connu sous le sigle ONAG), une nouvelle approche qui permet de voir les nombres réels dans un cadre beaucoup plus vaste de “tous les nombres” (“All Numbers Great and Small”). Le terme “nombres surréels”, crée par Donald Knuth dans son livre Surreal numbers – how two ex-students turned on to pure mathematics and found total happiness (qui est paru même avant ONAG), est un peu malheureux car il suggère une analogie avec le courant d’art de même nom, ce qui est trompeur. Dans cet exposé, je tenterai de vous expliquer que ces nombres sont aussi réels que tout objet mathématique vivant dans l’univers mathématique, et pour lequel l’univers de von Neumann fournit un modèle. Il s’agit d’un travail en cours, loin d’être terminé.