Upcoming presentations
Benoît Daniel (IÉCL) -- titre à venir
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 November 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Résumé :Un crible minorant effectif pour les entiers friables
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 November 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Adrien Mounier (Aix-Marseille Université) Résumé :Soient $\mathcal{A}$ un ensemble fini d’entiers naturels non-nuls et $y \geq 1$. Nous donnons une minoration effective du cardinal de l’ensemble $\{n\in\mathcal{A} ; p|n \Rightarrow p \leq y\}$ sous la condition d’une bonne connaissance du niveau de répartition de l’ensemble $\mathcal{A}$. Quelques conséquences seront ensuite abordées, dont une application aux valeurs friables de polynômes ou de formes binaires à coefficients entiers, puis une application aux entiers friables voisins.
Journée à l'honneur de David Vogan
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 December 2024 00:00-23:59 Lieu : Oratrice ou orateur : Résumé :Une version effective du théorème des nombres premiers de Lu
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 December 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Vincent Gozé (Université du Littoral Côte d'Opale) Résumé :Soit $\pi(x)$ le nombre de nombres premiers dans l’intervalle $[1,x]$. Nous savons depuis Euclide que $\pi(x)$ tend vers l’infini, mais à quelle vitesse ? La réponse à cette question fut obtenue pour la première fois en 1896 par Jacques Hadamard et Charles-Jean de la Vallée Poussin qui démontrèrent, de manière indépendante, le théorème des nombres premiers: \[\pi(x)\sim \frac{x}{\log x}\quad(x\to \infty).\]
La démonstration de Hadamard et La Vallée Poussin utilise principalement les propriétés de la fonction zêta de Riemann et donc l’analyse complexe. Ce n’est qu’en 1949 qu’Erdős et Selberg publièrent indépendamment la première démonstration élémentaire (utilisant uniquement l’analyse réelle) du théorème des nombres premiers. Dans cet exposé, nous présenterons le développement historique des démonstrations élémentaires du théorème des nombres premiers puis nous donnerons une version effective du théorème des nombres premiers de Lu qui, à ce jour, donne le meilleur terme d’erreur en utilisant des méthodes élémentaires.
Pause pour arbre de Noël GNC à Orléans
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 December 2024 14:15-15:15 Lieu : Oratrice ou orateur : Résumé :Sur une généralisation des puissances d'un entier (``powered numbers''). Application à un problème additif.
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 December 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Olivier Robert (Institut Camille Jordan) Résumé :La notion de fonction puissance d’un nombre entier, introduite par Mazur (2000) fait intervenir le noyau (ou radical) d’un entier. Cette fonction lui permet de définir une généralisation des puissances (“powered numbers”). Après avoir rappelé des résultats récents sur le noyau d’un entier, nous présenterons des résultats nouveaux sur la fonction de répartition des puissances généralisées, ainsi que sur un problème additif concernant la représentation d’un entier comme somme de puissances généralisées. Ce travail a été réalisé en collaboration avec J. Brüdern.
Pierre Bieliavksy -- titre à venir
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 February 2025 14:14-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bieliavsky (Louvain-la-Neuve) Résumé :Past presentations
Une extension probabiliste de la suite d’Oldenburger-Kolakoski
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 20 October 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Irène Marcovici (IECL) et Damien Jamet (LORIA) Résumé :La suite d’Oldenburger-Kolakoski est l’unique suite infinie sur l’alphabet {1,2} qui commence par un 1 et est un point fixe de l’application de codage par plage. Dans cet exposé, nous prendrons un peu de recul par rapport à cette suite bien connue et très étudiée, en introduisant de l’aléa dans le choix des lettres écrites. Cela nous permettra de montrer des résultats portant sur la convergence de la densité de 1 dans les suites ainsi construites. Dans le cas où les lettres sont choisies selon une suite i.i.d. de variables aléatoires ou selon une chaîne de Markov, la densité moyenne de 1 converge. De plus, dans le cas i.i.d., nous arrivons même à démontrer que la densité converge presque sûrement. Il s’agit d’un travail réalisé conjointement par Chloé Boisson, Damien Jamet, et Irène Marcovici.
Une famille de self-maps holomorphes du disque unité.
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 20 October 2022 14:00-15:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jean-Marc Sac-Épée Résumé :Nous donnons une caractérisation des ensembles $D_p (1 < p < 2)$ des nombres complexes $c$ tels que $z\mapsto \frac{1+z}{2}+c\left(\frac{1-z}{2}\right)^{p}$ soit une self-map du disque unité fermé, et nous montrons que ces ensembles sont croissants en fonction de $p$.
Les fonctions polyhomogènes et les calculs pseudo-différentiels de Beals/Greiner vs Van Erp/Yuncken
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 October 2022 13:30-14:30 Lieu : Salle de séminaires Metz Oratrice ou orateur : Nathan Couchet (Clermont-Ferrand) Résumé :Dans la première moitié de l’exposé nous établirons un premier théorème à savoir que dans le contexte des dilatations, tout symbole classique/poly-homogène a(x,\xi) est la restriction en t=1 d’une fonction homogène modulo Schwartz u(x,\xi,t), vue dans une dimension supérieure.
La seconde moitié de l’exposé fera le pont entre le calcul pseudo-différentiel groupoïdal de Yuncken et Van Erp datant de 2017, dans lequel EvY définissent un calcul pseudo-différentiel grâce aux distributions r-fibrées sur le groupoïde tangent généralisé d’Alain Connes, et les travaux de Beals et Greiner datant de 1983, dans lesquels BG définissent un calcul pseudo-différentiel dans le cadre des variétés d’Heisenberg. Un second théorème que nous avons obtenu montre que ces deux théories coïncident.
Pseudodifferential calculus using generalized fixed point algebras
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 6 October 2022 14:00-15:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Eske Ewert (Hannover) Résumé :The principal symbol of a pseudodifferential operator is homogeneous and shows, therefore, a certain invariance under the $\mathbb R_{>0}$-action by scaling.The scaling action can be extended to the so called zoom action of $\mathbb R_{>0}$ on the tangent groupoid. In this talk, I will explain why order zero pseudodifferential operators can be viewed as generalized fixed points of the zoom action in the sense of Rieffel.
This method is applicable in more general situations, for example for filtered manifolds. Here, we recover the order zero pseudodifferential extension by van Erp and Yuncken. Our approach allows to compute the spectrum of the noncommutative symbol algebra. This gives a Fredholm criterion for pseudodifferential operators in this calculus in terms of a Rockland condition.
Complexe BGG et KK-théorie de Kasparov
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 22 September 2022 14:15-15:30 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Julg Résumé :Depuis les années 1980 le problème de la démonstration de la conjecture de Baum-Connes à coefficients pour les groupes semisimples a conduit Kasparov et ses émules à s’intéresser au complexe BGG (Bernstein–Gelfand–Gelfand) associé aux espaces de drapeaux.
Nous expliquerons, dans le cas du rang réel 1, comment ce complexe donne un module de Fredholm qui réalise l’élément gamma de Kasparov et devrait permettre de démontrer la conjecture.
Quelques problèmes ouverts sur des familles de suites binaires
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 23 June 2022 15:15-16:15 Lieu : Salle Döblin Oratrice ou orateur : Shalom Eliahou (Université du Littoral Côte d'Opale) Résumé :Dans cet exposé, on considérera des familles finies de suites binaires (1 et -1) de même longueur finie n dont les coefficients de corrélation satisfont quelques conditions élémentaires. La question de l’existence de telles familles, et de leur construction, donne lieu à divers problèmes ouverts, avec des ramifications tant théoriques (combinatoire, algèbre, théorie des nombres, etc) qu’appliquées (codes correcteurs, spectrométrie, radars, etc). On se penchera plus spécifiquement sur trois ou quatre problèmes typiques dans ce cadre.
Sums of Kloosterman sums with multiplicative coefficients
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 23 June 2022 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Igor Shparlinski (University of New South Wales) Résumé :We consider Kloosterman sums
$$
K_p(n) = \sum_{x=1}^{p-1} \exp(2 \pi i (nx + x^{-1})/p)
$$
modulo a prime $p$ and define their sums
$$
M_p(N) = \sum_{n \le N} \mu(n) \mathcal{K}_p(n) \qquad \mbox{and}\quad T_{\nu,p}(N) = \sum_{n \le N} \tau_\nu(n) \mathcal{K}_p(n)
$$
twisted by the Möbius function $\mu(n)$ and by the $\nu$-fold divisor function $\tau_\nu(n)$. Fouvry, Kowalski & Michel (2014) and Kowalski, Michel & Sawin (2018) improved the trivial bounds
$$
M_p(N) \ll N \qquad \mbox{and}\quad T_{\nu,p}(N) \ll N (\log N)^{\nu -1}.
$$
for $N \ge p^{3/4+\varepsilon}$ and $N \ge p^{2/3+\varepsilon}$, respectively (for any fixed $\varepsilon>0$). We will explain the ideas of the recent joint work with Maxim Korolev (2020) where both these thresholds are lowered down to $N \ge p^{1/2+\varepsilon}$. We will also discuss some open questions.
Conjecture de Manin—Peyre pour une famille de solides admettant des fibrations quadriques
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 23 June 2022 11:00-12:00 Lieu : Oratrice ou orateur : Zhizhong Huang (IST Austria) Résumé :Manin et ses collaborateurs ont conjecturé des formules asymptotiques pour le nombres des points de hauteur anticanonique bornée sur les variétés de Fano. Nous démontrons cette conjecture pour la famille de variétés définies par l’équation $$L_1(x_1,x_2)y_1^2+L_2(x_1,x_2)y_2^2+L_3(x_1,x_2)y_3^2+L_4(x_1,x_2)y_4^2=0,$$ où $L_i$ sont des formes bilinéaires deux à deux non-proportionnelles. La constante arithmétique apparaissant dans le terme principal coïncide avec celle conjecturée par Peyre. La démonstration utilise divers outils de la théorie analytique des nombres. Il s’agit d’un travail en commun avec D. Bonolis et T. Browning.
Well-behaved Beurling number systems
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 22 June 2022 11:00-12:00 Lieu : Salle Döblin Oratrice ou orateur : Frederik Broucke (Ghent University) Résumé :Optimality for Tauberian theorems
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 22 June 2022 10:00-11:00 Lieu : Salle Döblin Oratrice ou orateur : Gregory Debruyne (Ghent University) Résumé :One version of the Ingham-Karamata theorem states that for each slowly oscillating function $\tau$ whose Laplace transform admits an analytic continuation beyond the line $\Re s \: s = 0$ must obey the asymptotic law $\tau(x) = o(1)$. This theorem is a cornerstone in Tauberian theory and has plenty of applications in number theory; one of the quickest proofs of the Prime Number Theorem passes through this theorem.
We shall show that the decay rate $o(1)$ in the Ingham-Karamata theorem is optimal even if one assumes analytic continuation of the Laplace transform up to a larger halfplane. The attractive proof is based on the open mapping theorem.