Exposés à venir
Archives
Fonctions zêta dynamiques et torsion de Reidemeister
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 23 janvier 2023 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Léo Bénard Résumé :Structures localement conformément produit (Locally conformally product structures)
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 16 janvier 2023 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Brice Flamencourt Résumé :Les structures localement conformément produit (LCP) apparaissent sur les variétés conformes compactes lorsque l’on considère une connexion qui est localement la connexion de Levi-Civita d’une métrique, mais pas globalement. Le relèvement d’une telle connexion au revêtement universel de la variété LCP est la connexion de L-C d’une métrique produit, donnant sont nom à la structure.
Dans cet exposé, on décrira les propriétés fondamentales de ces structures, et on expliquera comment se construisent les exemples connus de variétés LCP, afin d’initier une classification. On étudie certains invariants naturels, et on exhibe également un lien avec la théorie des corps de nombres.
Abstract : The locally conformally product structures (LCP) arise on compact conformal manifolds when we consider a connection which is locally but not globally the Levi-Civita connection of a metric. The lift of such a connection to the universal cover of the LCP manifold is the L-C connection of a product metric, explaining the name of this structure.
In this talk, we will expose the properties of the LCP structures and we will construct some examples of LCP manifolds in order to initiate a classification. We introduce several invariants on LCP manifolds and we show that there exists a link with number fields theory.
Séminaire Commun de Géométrie - Finitude des groupes hyperboliques
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 9 janvier 2023 14:00-16:00 Lieu : Oratrice ou orateur : Gilles Courtois Résumé :Vacances - pas de séminaire
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 26 décembre 2022 00:00-00:00 Lieu : Oratrice ou orateur : Résumé :Vacances - pas de séminaire
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 19 décembre 2022 00:00-00:00 Lieu : Oratrice ou orateur : Résumé :Comportement asymptotique des espaces-temps spatialement homogènes
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 12 décembre 2022 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : François Béguin Résumé :Les espaces-temps spatialement homogènes sont des modèles d’univers en Relativité Générale, où l’équation d’Einstein se réduit à une équation différentielle sur l’espace des métriques invariantes à gauche sur un groupe de Lie. J’expliquerai comment expliciter cette équation différentielle, puis comment l’étudier. Nous verrons que sa dynamique est étonnament riche et complexe. Mon but final sera de présenter un résultat de T. Dutilleul et moi-même qui affirme — en simplifiant grossièrement — que, si on choisit un espaces-temps spatialement homogène « au hasard », alors, avec une probabilité positive, la courbure de cet espace-temps oscille de manière chaotique quand on s’approche de sa singularité initiale.
Séminaire Commun de Géométrie - Régularité C^1 pour les minimiseurs du problème de Griffith
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 5 décembre 2022 14:00-16:00 Lieu : Oratrice ou orateur : Antoine Lemenant Résumé :Le problème de Griffith est un problème où l’on minimise la mesure de surface d’un certain « ensemble de discontinuité libre » qui intervient dans un modèle de propagation de fissure en élasticité linéarisée. Il s’agit d’une variante vectorielle de la célèbre fonctionnelle de Mumford-Shah, correspondant au cas scalaire et pour laquelle la régularité des minimiseurs est bien connue depuis les années 90. L’analogue vectoriel (Griffith) est beaucoup plus difficile à appréhender en raison de problèmes techniques que l’on tentera d’expliquer. Cependant, certains résultats partiels de régularité C^1 qui ont été obtenus récemment en collaboration avec Jean-François Babadjian (Paris-Saclay) et Flaviana Iurlano (Sorbone Université) en dimension 2, puis généralisés en dimension supérieure en collaboration avec Camille Labourie (Erlangen-Nuremberg). Le but final de l’exposé sera de présenter ces résultats récents. Avant cela, dans une première partie, nous présenterons un panorama rapide de la théorie de régularité classique en partant du problème de Plateau, puis en faisant le lien avec ce qui est connu (ou encore ouvert) sur Mumford-Shah, pour enfin aboutir à Griffith dans une seconde partie de l’exposé.
Totally umbilic surfaces in hyperbolic 3-manifolds of finite volume
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 28 novembre 2022 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alvaro Ramos Résumé :Conversely, a complete, totally umbilic surface with mean curvature H, embedded in a hyperbolic 3-manifold of finite volume
must be proper and have finite, negative Euler characteristic.
Joint work with Colin Adams and William Meeks.
Problème isodiamétrique, densité et rectifiabilité
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 21 novembre 2022 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Antoine Julia Résumé :Un ensemble de l’espace euclidien est rectifiable s’il peut être couvert presque entièrement par des sous-variétés de classe $C^1$, ce qui permet de l’étudier avec des outils d’analyse. Une propriété importante de tels ensembles est que leur mesure de Hausdorff a densité égale à 1 presque partout.
Mon exposé portera sur la question opposée : est-ce que la densité implique la rectifiabilité ?
Le problème est ouvert dans les espaces métriques généraux et assez lié au problème isodiamétrique : c’est-à-dire de trouver l’ensemble de volume maximal parmi les ensembles de diamètre fixé. Je donnerai une réponse dans le cas des groupes de Lie homogènes qui sont des modèles naturels pour la question. (C’est un travail en commun avec Andrea Merlo.)
La conjecture du volume de la TQFT de Teichmüller pour les nœuds twist
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 14 novembre 2022 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Fathi Ben Aribi Résumé :En 2011, Andersen et Kashaev ont défini une TQFT de dimension infinie à partir de la théorie de Teichmüller quantique. Cette TQFT de Teichmüller fournit un invariant des 3-variétés triangulées, et notamment des complémentaires de nœuds. La conjecture du volume associée affirme que la TQFT de Teichmüller du complémentaire d’un nœud hyperbolique contient le volume hyperbolique de ce nœud comme un certain coefficient asymptotique, et Andersen et Kashaev ont démontré cette conjecture pour les deux premiers nœuds hyperboliques.
Dans cet exposé, après un historique des invariants quantiques des nœuds et des conjectures du volume, je présenterai la construction de la TQFT de Teichmüller et comment nous avons démontré sa conjecture du volume pour la famille infinie des nœuds twist. Pour ce faire nous avons construit de nouvelles triangulations des complémentaires de ces nœuds, appelées triangulations géométriques car elles encodent la structure hyperbolique de la 3-variété sous-jacente.
Aucun prérequis en topologie quantique n’est nécessaire.
(en collaboration avec E. Piguet-Nakazawa et F. Guéritaud)