L'IECL

Séminaire Théorie de Lie, Géométrie et Analyse

Séminaire Théorie de Lie, Géométrie et Analyse

Abonnement iCal : iCal

Le séminaire Théorie de Lie, Géometrie et Analyse, ou LieGA en abrégé, a lieu le jeudi à 14h15 à l’IECL, soit dans la salle de séminaire du site de Metz, soit dans la salle de conférences du site de Nancy.
Il suffit d’envoyer un message à l’un des organisateurs dans les jours précédant un exposé pour qu’il soit transmis par visioconférence sur l’autre site.
Organisateurs: Alexandre Afgoustidis et Robert Yuncken
Adresses: prenom.nom@univ-lorraine.fr

Exposés à venir

Exposés passés

Eléments réels des bases cristallines

8 février 2024 14:15-15:15 - Salle de séminaires Metz
Oratrice ou orateur : Bernard Leclerc (Caen)
Résumé :

Les bases cristallines ont été introduites en 1990 par Kashiwara. Ses motivations provenaient de calculs dans la théorie des systèmes intégrables sur réseaux suivant une méthode initiée par Baxter. Heuristiquement, ces calculs se simplifient et deviennent praticables lorsque la température absolue tend vers 0 et que les systèmes « cristallisent ». Les bases cristallines sont des bases très spéciales des algèbres enveloppantes quantiques de Drinfeld et Jimbo, qui deviennent des objets purement combinatoires lorsque le paramètre quantique q tend vers 0. Elles ont permis de résoudre des questions importantes de théorie des représentations. En 1993 Berenstein et Zelevinsky ont commencé à explorer les propriétés multiplicatives de la base cristalline supérieure. Ils ont proposé une conjecture étonnante: si deux éléments de cette base q-commutent, leur produit appartient à la base. En 2001, après avoir découvert des contre-exemples, j’ai proposé une version corrigée de cette conjecture dans laquelle on rajoute l’hypothèse que l’un des deux éléments est « réel », c’est-à-dire que son carré appartient à la base. La conjecture corrigée a été démontrée par Kang-Kashiwara-Kim-Oh en 2018 en utilisant une catégorification des éléments de la base cristalline par des modules simples sur une algèbre de Hecke-carquois.

Après une introduction aux bases cristallines et à la conjecture de Berenstein-Zelevinsky, j’expliquerai les grandes lignes de la preuve de Kang-Kashiwara-Kim-Oh.


Thompson’s groups and its generalizations via continued fractions

1 février 2024 14:15-15:15 - Salle de séminaires Metz
Oratrice ou orateur : Ayberk Zeytin (Galatasaray University)
Résumé :

We re-visit Imbert’s theorem stating that Thompson’s group T is isomorphic to the universal Ptolemy group.  After interpreting this result in terms of bipartite Farey tree and continued fractions, we present an extension of the above result to Thompson’s group V. If time permits we discuss further generalizations.


Formule géométrique des intégrales orbitales et ses applications

25 janvier 2024 14:15-15:15 - Salle de séminaires Metz
Oratrice ou orateur : Shu Shen (Jussieu)
Résumé :

Les intégrales orbitales jouent un rôle fondamental dans la formule des traces de Selberg et dans l’approche d’Harish-Chandra de la formule de Plancherel. Dans cet exposé, j’expliquerai une formule géométrique obtenue en collaboration avec Bismut pour les intégrales orbitales semi-simples associées à tous les éléments du centre de l’algèbre enveloppante. Si le temps le permet, j’aborderai également une application sur la théorie de K-type minimal de Vogan, ce qui constitue un travail en cours avec Y. Song et X. Tang.


Journée ATN-Géométrie

18 janvier 2024 09:00-16:30 - Salle de conférences Nancy
Oratrice ou orateur :
Résumé :

Quatre exposés des équipes ATN et Géométrie, et de la bonhomie.


Supergroupe de Lie orthosympléctique: paires duales, théorème du double commutant et dualité

21 décembre 2023 13:30-14:30 - Salle de séminaires Metz
Oratrice ou orateur : Allan Merino (Simmons University)
Résumé :

Avec Hadi Salmasian, nous avons récemment obtenu une classification des paires duales réductives irréductibles dans le supergroupe de Lie orthosympléctique, ainsi qu’une généralisation du théorème de double commutant pour l’algèbre de Weyl Clifford. En particulier, cela nous donne la dualité de Howe lorsque l’action du supergroupe (G, g) est semisimple. 

Je commencerai mon exposé par un (long) rappel sur la correspondance de Howe classique pour la représentation métapléctique et spinorielle (travail en commun avec Clément Guérin et Gang Liu), avant de présenter les résultats obtenus pour les supergroupes/superalgèbres.


Limites quantiques sous-riemanniennes

21 décembre 2023 14:15-15:15 - Salle de séminaires Metz
Oratrice ou orateur : Véronique Fischer (Bath)
Résumé :

Je commencerai par discuter brièvement l’analyse semi-classique pour introduire le concept de limites quantiques. Après cela, je donnerai un aperçu de la géométrie sous-Riemannienne et les récents développements en géométrie spectrale dans ce contexte, surtout en ce qui concerne les limites quantiques.


Projecteurs spectraux sur les surfaces hyperboliques d'aire infinie

30 novembre 2023 14:15-15:15 - Salle de réunion Metz (ARC-027)
Oratrice ou orateur : Jean-Philippe Anker (Orléans)
Résumé :

Mon exposé sera conçu comme une introduction au travail récent [hal-04231695]
en collaboration avec Pierre Germain (Imperial College) et Tristan Léger (Princeton).
Dans le cas des surfaces hyperboliques d’aire infinie, nous y établissons des estimations
$L^2-L^p$ quasi-optimales des projecteurs spectraux dans une petite fenêtre.
Je commencerai par rappeler l’origine du problème,
lié au théorème de restriction de Tomas-Stein dans le cas euclidien,
et par passer en revue différents cas d’études, où la réponse attendue est moins clair


Homological invariants of group Banach algebras of discrete groups

23 novembre 2023 14:15-15:15 - Salle de séminaires Metz
Oratrice ou orateur : Michaël Puschnigg (Marseille)
Résumé :
Several conjectures about « assembly maps » in $K$-theory (Baum-Connes Conjecture) and surgery theory (Borel Conjecture) rank among the most significant open problems about discrete groups.
In this talk we will present some recent progress on a similar conjecture about the assembly map in local cyclic homology for discrete, cocompact isometry groups of $CAT(0)$-spaces.

Clifford algebras, symmetric spaces and cohomology rings of Grassmannians

16 novembre 2023 13:45-14:45 - Salle de conférences Nancy
Oratrice ou orateur : Pavle Pandzic (Zagreb)
Résumé :

We study various kinds of Grassmannians or Lagrangian Grassmannians over RC or H, all of which can be expressed as G/P where G is a classical group and P is a parabolic subgroup of G with abelian unipotent radical. The same Grassmannians can also be realized as (classical) compact symmetric spaces G/K. We give explicit generators and relations for the de Rham cohomology rings of G/P=G/K. At the same time we describe certain filtered deformations of these rings, related to Clifford algebras and spin modules. While the cohomology rings are of our primary interest, the filtered setting of K-invariants in the Clifford algebra actually provides a more conceptual framework for the results we obtain. This is joint work with Kieran Calvert and Kyo Nishiyama.


Quantum Permutations and Quantum Symmetries

19 octobre 2023 14:15-15:15 - Salle de séminaires Metz
Oratrice ou orateur : Moritz Weber (Saarbrücken)
Résumé :

In the past decades a kind of « quantum mathematics » has evolved as a more and more coherent theory. It contains, amongst others, C*-algebras (aka noncommutative topology), von Neumann algebras (aka noncommutative measure theory), Connes’s noncommutative (differential) geometry, Voiculescu’s free probability theory and many more. In this mostly analytic setting, Woronowicz’s quantum groups provide a suitable notion of quantum symmetry.
In this talk, we will give a pedestrian approach to quantum symmetries: We will introduce quantum permutations purely in the language of linear algebra and sketch its use in graph theory (see for instance an exciting extension of Lovasz’ homomorphism counts theorem from the 1960s). On the way, we will briefly mention the broader context of quantum mathematics, quantum groups and some links to quantum information theory. We will try to keep the talk quite algebraic and combinatorial and we will avoid too many details from analysis.


Décomposabilité géométrique pour les groupoïdes

19 octobre 2023 15:45-16:45 - Salle de séminaires Metz
Oratrice ou orateur : Hervé Oyono-Oyono (IÉCL)
Résumé :

La décomposabilité géométrique  pour un groupoïde peut-être vue comme une forme d’implémentation de la technique de « cut-and-pasting » utilisée par G. Yu dans sa preuve de la conjecture de Novikov pour les groupes de dimension  asymptotique finie.

Dans cet exposé, nous introduirons tout d’abord ce concept de décomposabilité, puis nous établirons le lien avec la dimension asymptotique et plus généralement avec la notion de décomposabilité  à complexité finie pour un espace métrique. Nous donnerons des applications à la moyennabilité des groupoïdes (en particulier à celle des actions de groupes). Si le temps nous le permet nous discuterons d’applications à la calculabilité en K-théorie (en particulier à la conjecture de Baum-Connes).


Réunion d'équipe

5 octobre 2023 14:30-15:30 -
Oratrice ou orateur :
Résumé :

Sur les déformations des groupes de Lie semisimples

28 septembre 2023 02:15-03:15 - Salle de séminaires Metz
Oratrice ou orateur : Bob Yuncken
Résumé :

Un groupe de Lie semisimple G peut être placé dans une famille de déformations qui aboutit dans le groupe de mouvements de Cartan.  Cette idée provient de Mackey avec clarification par Higson et Afgoustidis.  Si G est complexe, sa structure de Poisson-Lie permet une famille de déformations de $G$ dans des groupes quantiques découverts par Drinfeld, Woronowicz et d’autres.  Les deux déformations sont réunis dans des travaux de Monk & Voigt.  Dans cet exposé, j’essayerai de dessiner cette famille de déformations à 2 paramètres ainsi que ses duaux réduites.  Rien ne sera original.  Si le temps et l’enthousiasme le permet, j’ajouterai quelques réflexions speculatives sur le cas réel.


Toeplitz operators on quotient domains

21 septembre 2023 14:15-15:15 - Salle de conférences Nancy
Oratrice ou orateur : E. K. Narayanan (Indian Institute of Science)
Résumé :

Let $G$ be a finite pseudo-reflection group and $\Omega$ be a bounded domain in $\mathbb C^d$ which is $G$-invariant. The quotient domain $\Omega/G,$ is biholomorphically equivalent to a domain ${{\boldsymbol \theta}} (\Omega)$ where ${{\boldsymbol \theta}} : \Omega \to {{\boldsymbol \theta}}(\Omega)$ is a basic polynomial map. Prominent example of a quotient domain is the symmetrized polydisc $\mathbb G_d$ in $\mathbb C^d.$ In this case, the basic polynomial map is given by $z \to (s_1(z), s_2(z), \cdots s_d(z))$ from $\mathbb D^d$ (unit polydisc in $\mathbb C^d$) to $\mathbb G_d$ where $s_j(z)$ is the $j$-th elementary symmetric polynomial. We study properties of Toeplitz operators on weighted Bergman spaces on ${{\boldsymbol \theta}}(\Omega)$ by establishing a connection of them with Toeplitz operators on weighted Bergman spaces on $\Omega.$ Results on zero product problem and commuting pairs of Toeplitz operators will be explained. Representation theory of $G$ and projections to isotypic components play an important role in our results. (Joint work with Gargi Ghosh)


Strichartz's conjecture for Poisson transforms and generalized spectral projections on spinors

21 septembre 2023 15:45-16:45 - Salle de conférences Nancy
Oratrice ou orateur : Khalid Koufany
Résumé :

We consider the real hyperbolic space $H^n(R)$ as the symmetric space $\operatorname{Spin}_0(1, n) / \operatorname{Spin}(n)$.
We prove that the Poisson transform is an isomorphism between the space of $L^2$-spinors on the unit sphere $S^{n-1}$ and a certain weighted $L^2$-space consisting of joint eigenspinors on $H^n(R)$. For this purpose, we prove a Fourier restriction estimate and an asymptotic formula for the Poisson transform.
As a consequence we prove a characterization for the generalized spectral projections.
This is a joint work with A. Boussejra.


Suites BGG transverses

29 juin 2023 14:00-15:00 - Salle de séminaires Metz
Oratrice ou orateur : Clément Cren (Créteil)
Résumé :

Les suites de Bernstein-Gelfand-Gelfand trouvent leur origine en théorie des représentations des groupes de Lie semi-simples. Divers travaux leur ont ensuite donné une interprétation géométrique comme suite d’opérateurs différentiels sur certains espaces homogènes. Ce point de vue a permis à Čap, Slovák et Souček de les généraliser aux variétés possédant une géométrie parabolique au sens de Cartan. Ces variétés étant naturellement filtrées, des travaux récents de Dave et Haller ont montré que les suites d’opérateurs BGG satisfaisaient une certaine forme de la condition de Rockland (une extension de l’ellipticité pour les opérateurs pseudodifférentiels).

Dans cet exposé nous étendons la construction d’opérateurs de type BGG aux variétés feuilletés admettant une géométrie parabolique transverse. Nous définissons une condition de Rockland transverse adaptée à ces variétés et montrons que le complexe de de Rham tordu et les suites d’opérateurs BGG satisfont cette condition.


Graded Lie algebras and Harish-handra pairs

11 mai 2023 14:00-15:00 - Salle de séminaires Metz
Oratrice ou orateur : Oleksii Kotov (University of Hradec Králové)
Résumé :
In this talk, I will explain how Harish-Chandra pairs are used to integrate a graded (super) Lie algebra. I will also give some examples of the latter.

Lagrangien d'Hilbert-Einstein sur un espace de repères généralisés

23 mars 2023 14:00-15:00 - Salle de séminaires Metz
Oratrice ou orateur : Jeremie Pierard de Maujouy (Jussieu)
Résumé :

L’équation d’Einstein peut être obtenue comme le système d’équations d’Euler-Lagrange associées au Lagrangien d’Hilbert-Einstein, qui est essentiellement la courbure scalaire. Le tenseur de courbure, et donc l’équation d’Einstein, peut être construit et étudié sur le fibré des repères de l’espace-temps. Nous présenterons un Lagrangien sur une variété de dimension 10 dont les solutions aux équations d’Euler-Lagrange équipent la variété d’une structure qui est presque celle de l’espace des repères d’une variété d’Einstein. Ceci nous mènera à introduire une structure qui généralise celle des espaces de repères munis d’une connexion principale.


Probabilités sur les groupes quantiques compacts

16 mars 2023 14:00-15:00 - Salle de séminaires Metz
Oratrice ou orateur : Amaury Freslon (Orsay)
Résumé :

Les groupes quantiques compacts de matrices sont des généralisations des groupes de Lie compacts dans le contexte de la géométrie non-commutative. Malheureusement, il leur manque certains aspects fondamentaux des groupes classiques, et notamment un analogue de l’algèbre de Lie qui permettrait de définir une structure Riemannienne. Cela dit, on peut aussi retrouver cette structure de façon probabiliste à l’aide du mouvement Brownien. Je présenterai quelques travaux montrant comment cette approche probabiliste peut s’étendre au cadre quantique et éclairer le problème de la structure géométrique de ces groupes quantiques.


Chemins rugueux et algèbres de Hopf combinatoires

2 mars 2023 14:00-15:00 - Salle de séminaires Metz
Oratrice ou orateur : Dominique Manchon (UCA, Clermont-Ferrand)
Résumé :

L’algèbre de Hopf des battages joue un rôle central dans la théorie des chemins rugueux formulée par T. Lyons à la fin du siècle dernier. Ceux-ci sont un substitut des intégrales itérées de Chen lorsque les chemins considérés ne sont pas différentiables, ni même Lipschitziens, mais seulement continus avec une régularité de Hölder.  L’algèbre de Hopf de Butcher-Connes-Kreimer, dont une base est donnée par les forêts enracinées décorées, joue un rôle similaire dans la théorie des chemins rugueux branchés developpée par M. Gubinelli quelques années plus tard. Au cours de cet exposé, je ferai une présentation succincte de la théorie des chemins rugueux, puis j’aborderai d’autres variantes de la notion de chemin rugueux, pilotés par d’autres algèbres de Hopf combinatoires.

D’après des travaux communs récents avec M. J. H. Al-Kaabi, C. Curry, K. Ebrahimi-Fard et H. Z. Munthe-Kaas.

1 2 3 4 5 6 7 8 9 10 11