A venir
Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :
- Séminaire de géométrie différentielle : 14h-15h
- Séminaire de géométrie complexe : 15h30-16h30
Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.
Compact Kähler Manifolds with Nef Anti-Canonical Bundle
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 8 décembre 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Qimin Zhang Résumé :In this talk, I will present recent joint work with S.~Matsumura, J.~Wang, and X.~Wu on the structure of compact Kähler manifolds whose anti-canonical bundle is nef. We establish a general structure theorem in the Kähler setting, showing that X admits a locally trivial fibration whose fibers are rationally connected and whose base has vanishing first Chern class. Our approach extends the method of Cao–Höring from the projective to the Kähler case, requiring new tools such as a flatness criterion for pseudo-effective sheaves and a refined analysis of direct image sheaves equipped with singular Hermitian metrics. I will also discuss the application, about the generalization of the Beauville–Bogomolov decomposition.
The geometry of Kerr black holes and the Teukolsky equation.
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 8 décembre 2025 15:30-16:30 Lieu : Oratrice ou orateur : Pascal Millet Résumé :An important family of solutions to the Einstein vacuum equations is given by the Kerr metrics, which describe rotating black holes. In this talk, I will present some important geometric properties of these spacetimes relevant to the study of classical field equations such as the scalar waves, electromagnetism and linearized gravity. As observed by Teukolsky, by exploiting a special algebraic property of the spacetime, it is possible to decouple certain components of the fields from the rest of the system, leading to the so-called Teukolsky equation. Solutions of this equation can then be analyzed to recover information about the full system.
Mori dreamness of blowups of P^3 along a curve
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 15 décembre 2025 14:00-15:00 Lieu : Salle 113 Oratrice ou orateur : Tiago Duarte Guerreiro Résumé :Mori dream spaces are a special kind of varieties introduced by Hu and Keel in 2000 that enjoy very good properties with respect to the minimal model program. In this talk we explore when blowups of P^3 along smooth curves are Mori dream spaces, generalizing an early example of A. Küronya. This is joint work with Sokratis Zikas.
Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 5 janvier 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 26 janvier 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Andrei Moroianu Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 2 février 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 9 février 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laurent Hauswirth Résumé :TBA
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 16 février 2026 15:30-16:30 Lieu : Oratrice ou orateur : Maxence Phalempin Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 2 mars 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 30 mars 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hiba Bibi Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 4 mai 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 1 juin 2026 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Fulvio Gesmondo Résumé :Geometric methods in computational complexity
Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 6 juillet 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Archives
Preuves spinorielles du théorème d'Alexandrov pour les H_r-courbures dans R^(n+1) et de l'inégalité de Heintze-Karcher
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 25 novembre 2014 14:00-15:00 Lieu : Oratrice ou orateur : Christophe Desmonts Résumé :Equations de contraintes en théorie de champ scalaire
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 18 novembre 2014 14:00-15:00 Lieu : Oratrice ou orateur : Bruno Premoselli Résumé :En relativité générale, les équations de contraintes déterminent les données initiales permettant de résoudre les équations d’Einstein comme un problème d’évolution. La méthode conforme – initiée par Choquet-Bruhat, Lichnerowicz et York – rend ces équations déterminées en les posant sous la forme d’un système d’équations elliptiques non-linéaires (sur)-critiques fortement couplé. Nous étudierons dans cet exposé des propriété de stabilité de ce système elliptique. La notion de stabilité étudiée ici, définie comme une propriété de dépendance continue de l’ensemble des solutions du système en ses coefficients, se traduit en termes de pertinence physique de la méthode conforme dans la construction d’espace-temps solutions des équations d’Einstein. L’analyse de la stabilité du système des contraintes fait intervenir des techniques fines de blow-up et d’étude des défauts de compacité d’équations elliptiques critiques
Groupes fondamentaux épointés des singularités klt (d'après C. Xu)
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 17 novembre 2014 14:00-15:00 Lieu : Oratrice ou orateur : Benoît Claudon Résumé :Dans cet exposé j’essayerai d’expliquer les résultats de C. Xu sur les groupes fondamentaux épointés de germes de singularité klt (c’est à dire le groupe fondamental d’un voisinage analytique assez petit privé du point singulier considéré). La démonstration repose en grande partie sur des résultats récents du MMP.
Sur la géométrie d'une surface de caractéristique d'Euler 3 revêtue par la boule
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 20 octobre 2014 14:00-15:00 Lieu : Oratrice ou orateur : Vincent Koziarz Résumé :Au cours de leur classification des faux plans projectifs, Cartwright et Steger ont découvert de façon assez surprenante une surface de caractéristique d’Euler 3 dont le revêtement universel est la boule, et qui fibre sur une courbe elliptique. Le but de cet exposé sera de décrire de façon aussi précise que possible la géométrie de cette surface. Il s’agit d’un travail en commun avec D. Cartwright et S.-K. Yeung.
Travaux de Maryam Mirzakhani sur la métrique de Weil-Petersson
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 13 octobre 2014 14:00-15:00 Lieu : Oratrice ou orateur : Damien Mégy Résumé :Ceci est un exposé de groupe de travail. J’essaierai d’expliquer certains travaux de Maryam Mirzakhani sur les volumes d’espaces de modules, un peu plus en détail qu’à la journée d’accueil de l’IECL.
A Characterization of finite quotients of Abelian varieties
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 15 septembre 2014 14:00-15:00 Lieu : Oratrice ou orateur : Behrouz Taji Résumé :A classical uniformization result of Yau shows that any compact Kähler manifold with vanishing
Chern classes is, up to a cover, an Abelian variety. After generalizing this result to the context
of Kawamata log-terminal (or klt, for short) varieties, we prove a complete characterization of quotients
of Abelian varieties (by finite groups acting freely in codimension-one) via vanishing of (orbifold) Chern classes.
The main ingredient of the proof consists of tracing a correspondence (up to a suitable cover) between
semistable reflexive sheaves over klt spaces with vanishing orbifold Chern classes and locally-free sheaves whose
associated bundle is flat.
This is a joint work with Steven Lu.
Soutenance de thèse : Equations de Hardy-Sobolev sur les variétés Riemanniennes compactes : influence de la géométrie.
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 24 juin 2014 14:00-15:00 Lieu : Oratrice ou orateur : Hassan Jaber Résumé :Résumé
Applications holomorphes entre quotients de la boule
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 23 juin 2014 14:00-16:30 Lieu : Oratrice ou orateur : Pierre Py Résumé :Un quotient de la boule est une variété complexe compacte ou de volume fini dont le revêtement universel est isomorphe à la boule unité de $mathbb C^N$. Il est en général difficile de construire des exemples d’applications holomorphes surjectives entre de telles variétés, mis à part les revêtements finis. Quelques exemples ont été construits et étudiés par Mostow, Toledo et Deraux. Dans cet exposé j’expliquerai comment construire quelques nouveaux exemples. Cela repose sur les travaux de Couwenberg, Heckman and Looijenga.
Sur la torsion dans la cohomologie de certaines variétés de Shimura « locales » et globales
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 16 juin 2014 15:30-16:30 Lieu : Oratrice ou orateur : Pascal Boyer Résumé :Je présenterai les principales étapes de mon programme pour étudier la torsion dans la cohomologie des espaces de Lubin-Tate et des variétés de Shimura à la Harris-Taylor-Kottwitz, via lâétude dâune version entière de la filtration de monodromie-poids du faisceau pervers des cycles évanescents.
Complément de sous-fibrés en hyperplans dans les fibrés projectifs sur la droite
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 16 juin 2014 14:00-15:00 Lieu : Oratrice ou orateur : Adrien Dubouloz Résumé :Un résultat surprenant de Danilov-Gizatullin dit que la classe d’isomorphie abstraite du complémentaire d’une section ample dans une surface de Hirzebruch ne dépend que de l’auto-intersection de cette section: en particulier elle ne dépend ni de la surface projective ambiante, ni du choix de la section à auto-intersection fixée. Un tel complémentaire possède la structure topologique naturelle d’un fibré en droites complexes sur la sphère, et le résultat de Danilov-Gizatullin dit de manière équivalente que son type d’isomorphie en tant que variété algébrique affine est uniquement déterminé par le degré de ce fibré en droites sous-jacent. Plus généralement, le complémentaire d’un sous-fibré en hyperplans d’un fibré projectif sur la droite projective est homéomorphe à un fibré vectoriel complexe sur la sphère et l’on peut formuler la conjecture, a priori très optimiste et ne reposant sur aucune base sérieuse, que sous certaines conditions raisonnables portant sur le sous-fibré (pas exemple, son amplitude), le type d’isomorphie abstrait en tant que variété algébrique d’un tel complémentaire est de nouveau totalement déterminé par le type topologique du fibré vectoriel sous-jacent, soit donc uniquement par son rang et son degré. Nous verrons durant l’exposé que cette « conjecture » s’avère ne pas être aussi fausse que prévue …