Seminars

The Probability and Statistics seminar takes place every Thursday in the conference room from 10:45 to 11:45 am. It is a generalist seminar on probability and statistics, both theoretical and applied. The seminar leaders are Valentin Féray and Yvain Bruned.

A working group in probability and statistics is organized on Thursdays in the conference room from 9:15 to 10:15 am. The working group leaders are Sara Mazzonetto and Koléhè Coulibaly-Pasquier.

Upcoming presentations

Hamburgers, cheeseburgers and critical Liouville quantum gravity

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 18 December 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : William Da Silva Résumé :

In a landmark paper, Scott Sheffield introduced a famous bijection, called the “hamburger-cheeseburger” bijection, to encode a certain model of random planar maps as a certain queue model in a kitchen selling hamburgers and cheeseburgers. Under this correspondence, natural geometric observables have a nice “burger” interpretation, for which Sheffield established scaling limit results. These scaling limits exhibit a phase transition in a special regime where the maps are believed to be “critical”. The goal of this talk is to present the analogue of these scaling limit results in the critical case, which can be thought of as the first convergence result of planar maps in the universality class of critical Liouville quantum gravity, in the so-called peanosphere sense. The talk is based on joint work with Xingjian Hu, Ellen Powell and Mo Dick Wong.


Local-field equations and propagation of chaos

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 18 December 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Michel Davydov Résumé :

Many phenomena of interest in various applicative fields (epidemiology, neuroscience,…) can be idealized as interacting particle systems on random graphs. Various approaches have been proposed in recent years to develop tractable approximations of these dynamics that take the graph geometry and particle correlations into account. One of them, introduced by Lacker, Ramanan and Wu, focuses on dynamics on sparse graphs and their local limits. Analogously to mean-field models on complete and dense graphs, it is possible to establish so-called local-field equations on random trees that provide an autonomous description of the neighborhood of the root. In this talk, we will give a general overview of the local-field approach, as well as a recent result of quantitative propagation of chaos in this framework.


Nicolas Chenavier

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 8 January 2026 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas Chenavier (Université du Littoral Côte d'Opale) Résumé :

Pierre-Olivier Goffard

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 8 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre-Olivier Goffard Résumé :

Patrick Tardivel

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Patrick Tardivel (Université de Bourgogne) Résumé :

Etienne Pardoux

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 29 January 2026 10:45-11:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Etienne Pardoux (Marseille) Résumé :

Exposé à Metz. Titre et résumé à venir.


Ariane Carrance

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 5 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ariane Carrance (Vienna) Résumé :

Leticia Mattos

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 12 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Leticia Mattos (Heidelberg) Résumé :

Mariana Olvera-Cravioto

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 12 March 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mariana Olvera-Cravioto (Univ. North Carolina) Résumé :

Nicolas Curien

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 March 2026 10:45-11:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Nicolas Curien (Orsay) Résumé :

Exposé à Metz. Titre et résumé à venir.


Jean-Armel Bra

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 7 May 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jean-Armel Bra (Besançon) Résumé :

Alex Podgorny

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 11 June 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alex Podgorny (Strasbourg) Résumé :

Colloquinte?

Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 18 June 2026 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Equipe PS Résumé :

Date possible pour le colloquinte


Past presentations

Upcoming presentations

Fréquences de lettres dans des suites auto-descriptives

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 18 December 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Mai Linh Tran-Cong Résumé :

La suite d’Oldenburger-Kolakoski est l’unique mot infini sur l’alphabet {1,2} qui commence par un “1” et est point fixe de l’opérateur de dérivation. En 1991, M.S. Keane conjecture que cette suite admet une fréquence d’1/2 pour la lettre “1”.

Les suites dites “auto-descriptives” sont une généralisation du mot d’Oldenburger-Kolakoski. Ces suites sont en bijection naturelle avec l’ensemble de toutes les suites sur l’alphabet {1,2} : une suite auto-descriptive est dite “dirigée” par son homologue naturelle sur {1,2}. Est-il possible d’inférer les fréquences de lettres de l’une à partir de l’autre ?

Je présenterai dans cet exposé deux approches à cette question : l’une probabiliste (Boisson, Jamet, Marcovici — 2024), l’autre analytique (Akiyama, Jamet, Marcovici, T.C. — 2024).


Towards an asymptotic equivalence of Patterson–Sullivan and Wigner distributions for hyperbolic surfaces

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 8 January 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Guendalina Palmirotta (Paderborn) Résumé :
There is a curious relation between two kinds of phase space distributions associated to eigenfunctions of the Laplacian on a hyperbolic surface: Patterson-Sullivan distributions, which are invariant under the geodesic flow, and Wigner distributions, which arise in quantum chaos and are invariant under the wave group.
In this talk, we will describe these two distributions and generalise them on convex-cocompact hyperbolic surfaces. Then, we will show how they are asymptotically intertwined.
This is a joint work with Benjamin Delarue (Universität Paderborn).

On a sequence of functions pretending to be an analytic, compactly supported function

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 8 January 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Gregory Debruyne (Gent, Belgique) Résumé :

Many arguments in mathematics rely on the introduction of an auxiliary function that is compactly supported. Sometimes this compactly supported function is required to satisfy some additional regularity, but this cannot be pushed too far. It can for instance not be analytic as follows by the identity principle.

In this talk, we wish to present a technique that may bypass this obstruction. Namely, instead of considering a single function, we shall construct a sequence of function that are supported in the same compact, and satisfy some good uniform bounds on their derivatives.

This method is a powerful tool as it can, in some circumstances, turn a heuristic argument relying on a compactly supported analytic auxiliary function, into a rigorous proof. As an application, we shall discuss how this technique leads to improvements in some quantified Tauberian theorems.


A venir

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 January 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cedric Pilatte (Oxford) Résumé :

Antonio Lopez-Neumann (titre à venir)

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 22 January 2026 14:15-15:15 Lieu : Salle de réunion Metz (ARC-027) Oratrice ou orateur : Antonio Lopez-Neumann (Jussieu) Résumé :

Farid Mokrane - titre à venir

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 22 January 2026 15:45-16:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Farid Mokrane (Paris) Résumé :

Miquel Cueca Ten (titre à venir)

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 29 January 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Miquel Cueca Ten (KU Leuven) Résumé :

Jan Pulmann -- titre à venir

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 February 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jan Pulmann (Charles University) Résumé :

A venir

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 February 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Ade Irma Suriajaya (Kyushu, Japon) Résumé :

Job Kuit -- titre à venir

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 February 2026 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Job Kuit (Paderborn) Résumé :

A venir

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 February 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Maud Szusterman (Ecole Polytechnique) Résumé :

A venir

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 March 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Kilian Lebreton (IECL) Résumé :

Effie Papageorgiou (titre à venir)

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 March 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Effie Papageorgiou Résumé :

A venir

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 March 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Emma Weschler (Lille) Résumé :

A venir

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 26 March 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Michel Balazard (Institut de Mathématiques de Marseille) Résumé :

Past presentations

The two-dimensional Dirac bag model in strong magnetic fields

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 March 2021 14:15-15:15 Lieu : Visioconférence Oratrice ou orateur : Edgardo Stockmeyer (Pontificia Universidad Catolica de Chile) Résumé :

We consider a Dirac system confined to a bounded domain in the plane. This amounts to a family of boundary conditions. There are two extreme cases, zig-zig and Infinite-mass boundary conditions. Consider a magnetic field perpendicular to the plane. I will present results on accurate asymptotics of the energy spectrum of the underlying Hamiltonian in the strong magnetic field limit. We will compare the results for different boundary conditions.

(This is based on joint collaboration with Jean-Marie Barbaroux, Loic Le Treust and Nicolas Raymond)

Zoom Meeting: Meeting ID: 895 2739 9138, Passcode: 7ni0ti


On computing $L’/L(1,\chi)$ and related problems

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 11 March 2021 14:30-15:30 Lieu : Salle de séminaire de Théorie des Nombres virtuelle Oratrice ou orateur : Alessandro Languasco Résumé :

We first describe an efficient algorithm to compute
$L’/L(1,\chi)$, where $\chi$ is a non-principal Dirichlet character
mod q, and q is an odd prime. We then discuss
some results on the distribution of
$m_q := \min_{\chi\ne \chi_0} \vert L’/L(1,\chi) \vert $
and about the Euler-Kronecker constants for cyclotomic fields.


Titre à  préciser

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 4 March 2021 14:15-15:15 Lieu : Oratrice ou orateur : Samuel Petite Résumé :

Résumé


The distribution of random polynomials with multiplicative coefficients

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 18 February 2021 14:30-15:30 Lieu : Oratrice ou orateur : Brad Rodgers Résumé :

A classic paper of Salem and Zygmund investigates the distribution of trigonometric polynomials whose coefficients are chosen randomly (say +1 or -1 with equal probability) and independently. Salem and Zygmund characterized the typical distribution of such polynomials (gaussian) and the typical magnitude of their sup-norms (a degree N polynomial typically has sup-norm of size $\sqrt{N \log N}$ for large N). In this talk we will explore what happens when a weak dependence is introduced between coefficients of the polynomials; namely we consider polynomials with coefficients given by random multiplicative functions. We consider analogues of Salem and Zygmund’s results, exploring similarities and some differences.

Special attention will be given to a beautiful point-counting argument introduced by Vaughan and Wooley which ends up being useful.

This is joint work with Jacques Benatar and Alon Nishry.


Équations de Painlevé non-commutatives et applications

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 February 2021 14:15-15:15 Lieu : Oratrice ou orateur : Mattia Cafasso (Université d'Angers) Résumé :

Les équations de Painlevé, tout comme beaucoup d’autres équations intégrables, admettent des généralisations au cadre non-commutatif, où la variable dépendante est remplacée, par exemple, par une matrice ou un opérateur. Cette extension au cadre non-commutatif a joué un rôle centrale dans ma collaboration avec Bertola et Roubtsov sur l’étude des systèmes de Calogero-Painlevé et, plus récemment, dans ma collaboration avec Bothner et Tarricone sur les équations de Painlevé de type intégrodifférentiel et leur applications aux probabilités intégrables. Dans mon séminaire, j’essaierai d’illustrer les résultats que nous avons obtenus dans les deux cas, en soulignant leur points communs.


Équations de Painlevé non-commutatives et applications

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 February 2021 14:15-15:15 Lieu : Oratrice ou orateur : Mattia Cafasso Résumé :

Les équations de Painlevé, tout comme beaucoup d’autres équations intégrables, admettent des généralisations au cadre non-commutatif, o๠la variable dépendante est remplacée, par exemple, par une matrice ou un opérateur. Cette extension au cadre non-commutatif a joué un rôle centrale dans ma collaboration avec Bertola et Roubtsov sur l’étude des systèmes de Calogero-Painlevé et, plus récemment, dans ma collaboration avec Bothner et Tarricone sur les équations de Painlevé de type intégrodifférentiel et leur applications aux probabilités intégrables. Dans mon séminaire, j’essaierai d’illustrer les résultats que nous avons obtenus dans les deux cas, en soulignant leur points communs.


Théorie de l'indice et analyse microlocale sur les groupoïdes

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 February 2021 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jean-Marie Lescure (Université Clermont Auvergne) Résumé :

Dans cet exposé nous aborderons deux aspects de l’utilité des groupoïdes de Lie. Le premier aspect concerne la théorie de l’indice des espaces stratifiés. Nous expliquerons comment les ingrédients du théorème d’Atiyah-Singer, ainsi que sa preuve, peuvent être reformulés à l’aide de groupoïdes, puis nous verrons comment étendre cette approche aux espaces stratifiés. Le second aspect concerne l’analyse microlocale sur les groupoïdes. Nous décrirons une généralisation des opérateurs pseudodifférentiels sur les groupoïdes de Lie : les opérateurs intégraux de Fourier, et nous mettrons en évidence le rôle fondamental joué par le groupoïde cotangent symplectique de Weinstein. Enfin, nous verrons que les solutions fondamentales des équations d’évolution appartiennent, à des régularisants près, à ce calcul intégral de Fourier.


Théorie de l'indice et analyse microlocale sur les groupoïdes

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 February 2021 14:15-15:15 Lieu : Oratrice ou orateur : Jean-Marie Lescure Résumé :

Dans cet exposé nous aborderons deux aspects de l’utilité des groupoïdes de Lie. Le premier aspect concerne la théorie de l’indice des espaces stratifiés. Nous expliquerons comment les ingrédients du théorème d’Atiyah-Singer, ainsi que sa preuve, peuvent être reformulés à  l’aide de groupoïdes, puis nous verrons comment étendre cette approche aux espaces stratifiés. Le second aspect concerne l’analyse microlocale sur les groupoïdes. Nous décrirons une généralisation des opérateurs pseudodifférentiels sur les groupoïdes de Lie : les opérateurs intégraux de Fourier, et nous mettrons en évidence le rôle fondamental joué par le groupoïde cotangent symplectique de Weinstein. Enfin, nous verrons que les solutions fondamentales des équations d’évolution appartiennent, à  des régularisants près, à  ce calcul intégral de Fourier.


Généralisations du théorème de Rockland

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 4 February 2021 15:15-16:30 Lieu : Oratrice ou orateur : Robert Yuncken Résumé :

Cet exposé concerne la relation entre l’analyse des opérateurs différentiels et les représentations des groupes de Lie nilpotent. La condition de Rockland généralise l’ellipticité pour les opérateurs différentiels sur les variétés qui à  l’échelle infinitésimale ressemblent à  un groupe de Lie nilpotent. C’est le cas pour la géométrie de contacte et les géométries paraboliques, par exemple. Un résultat de Melin, jamais publié, montre que de tels opérateurs vérifient les propriétés d’hypoellipticité et de Fredholm sur une variété compact. Une nouvelle preuve avec le groupoïde d’holonomie d’un feuilletage singulier nous permet de généraliser en même temps le théorème des sommes-de-carrés de Hörmander et obtenir des nouvelles classes d’opérateurs hypoelliptiques. (Travaux en commun avec I. Androulidakis, O. Mohsen et E. van Erp.)


Opérateurs de Dirac non-cubiques pour les modules de dimension finie

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 4 February 2021 13:30-14:30 Lieu : Soutenance sur YouTube Oratrice ou orateur : Spyridon Afentoulidis-Almpanis Résumé :

Partial differential equations seminars in Metz and Nancy

The seminars take place
– Fridays from 11am to 12pm, Seminar room, IECL Metz
– Tuesdays from 10:45 to 11:45 am, Conference room, IECL Nancy

During this period, until further notice, the seminars will take place in our virtual room on Zoom, at this link. The organizers of the seminars are : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Julie Valein (Nancy) and Ilaria Lucardesi (Nancy).

Upcoming presentations

Régularité d'un problème à frontière libre d'ordre 4

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 December 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickael Nahon Résumé :

Je vais présenter un problème d’optimisation à frontière libre analogue au problème de Alt-Caffarelli pour les fonctions biharmoniques. Ce problème apparaît dans différentes questions d’optimisation de forme, dont la minimisation de la trainée d’un obstacle dans un fluide sous contrainte de mesure, la minimisation de la première valeur propre de l’opérateur de Stokes (ou de flambage) dans les domaines du plan, etc.. On s’attend à ce que la frontière libre obtenue soit généralement une union de courbes lisses, pouvant se rejoindre avec un angle d’environ 1.43pi, et je présenterai plusieurs résultats allant dans ce sens.

C’est un travail en collaboration avec Jimmy Lamboley.


Séminaire: Uniform controllability for metastable systems

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 19 December 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Vincent Laheurte (Institut de Mathématiques de Bordeaux) Résumé :
In this talk, we consider the issue of the null-controllability for some problems presenting a metastable behavior. We will in particular consider the one-dimensional Burgers equation linearized at a stationary shock, and the Allen–Cahn equation linearized at a n-node solution. We give an upper and a lowerbound on the control time required for the controllability cost to remain bounded as the viscosity term tends to 0, aswell as a rough description of an admissible control. The proof relies on complex analysis and a precise spectral analysis of the operators at stake, and adapts methods previously used to tackle similar issues with very regular terms.

Romeo LEYLEKIAN

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Romeo LEYLEKIAN Résumé :

Séminaire: titre à venir

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 9 January 2026 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Annamaria Massimini (CERMICS) Résumé :

Résumé à venir


Laure GIOVANGIGLI

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laure GIOVANGIGLI Résumé :

Séminaire: titre à venir

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 16 January 2026 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Nicolas Frantz (LAREMA) Résumé :

Résumé à venir


Lucas COEURET

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas COEURET Résumé :

Séminaire: titre à venir

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 23 January 2026 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Lucas Coeuret (IECL) Résumé :

Résumé à venir


Marc PEGON

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marc PEGON Résumé :

Séminaire: titre à venir

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 30 January 2026 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Clémentine Courtès (IRMA) Résumé :

Résumé à venir


Nicolas VANSPRANGHE

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas VANSPRANGHE Résumé :

Benoit MERLET

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoit MERLET Résumé :

Camille LAURENT

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille LAURENT Résumé :

Past presentations

La méthode de Lyapunov pour des solutions de systèmes de Réaction-Diffusion

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 22 March 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Said Benachour (IECL) Résumé :

Quelques résultats sur l'équation de Hartree. Partie II : existence d'un état fondamental, cas général.

Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 22 March 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérémy Faupin Résumé :

L’équation de Hartree est une équation de Schrödinger non linéaire utilisée notamment pour décrire l’évolution de certains systèmes quantiques à grand nombre de particules. Dans la deuxième partie on s’intéressera au problème de l’existence d’un état fondamental, c’est-à-dire l’existence d’un état minimisant la fonctionnelle d’énergie, dans un cadre général. L’approche pour résoudre ce problème de minimisation sous contrainte repose sur des arguments développés par Lions dans les années 80, de type concentration-compacité.


Séminaire : Structure spectrale de quelques opérateurs non auto-adjoints

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 18 March 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Nicolas Frantz Résumé :

Dans cet exposé, nous considérons un opérateur non-auto adjoint sur un espace de Hilbert de la forme $H_0+V$ où $H_0$ est un opérateur auto-adjoint et $V$ est un opérateur borné à valeurs complexes. Nous supposons que la résolvante de $H_0$ satisfait un principe d’absorption limite et nous définissons les singularités spectrales de $H$ comme l’ensemble des points de son spectre essentiel tel que la résolvante de $H$ ne satisfait pas le principe d’absorption limite. Nous montrons alors que les singularités spectrales de $H$ sont en bijection avec des valeurs propres associées à des vecteurs propres spécifiques d’un prolongement de $H$ à un espace de Hilbert plus gros. Dans un deuxième temps, nous montrons que les états qui disparaissent à l’infini pour $H$ correspondent aux vecteurs propres généralisés de $H$ associés à des valeurs propres de partie imaginaire négative. Enfin nous définirons le sous-espace spectral absolument continu de $H$ et montrerons qu’il est égal à l’orthogonal de l’espace vectoriel engendré par tous les vecteurs propres généralisés de l’adjoint de $H$.


Problèmes de Schrödinger dynamiques: Gamma-convergence et convexité

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 15 March 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Léonard Monsaingeon (GFMUL Lisbon) Résumé :

Le problème de Schrödinger (~1930) consiste à inférer la trajectoire d’un système de particules Browniennes, étant données les observations de ses distributions statistiques en un temps initial et terminal. Récemment des liens profonds avec le Transport Optimal ont été mis à jour, permettant de voir le problème de Schrödinger comme une version bruitée du problème déterministe du transport optimal classique (géodésiques dans l’espace de Wasserstein des mesures de probabilités). Le niveau de bruit est déterminé par un paramètre de température $\varepsilon>0$, et l’interpolation temporelle est pilotée énergétiquement parlant par l’entropie de Boltzmann. Dans la limite de petit bruit, il est bien connu que ce problème bruité Gamma-converge vers sa contrepartie déterministe, ce qui est remarquablement utile numériquement. Dans cet exposé je discuterai une extension naturelle à des problèmes de Schrödinger géométriques dans des espaces métriques abstraits. On peut établir dans ce cadre un résultat de Gamma-convergence très général, et je montrerai comment la preuve mène également à des nouveaux résultats de convexité.


Quelques résultats sur l'équation de Hartree. Partie I : existence d'un état fondamental.

Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 15 March 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérémy Faupin Résumé :

L’équation de Hartree est une équation de Schrödinger non linéaire utilisée notamment pour décrire l’évolution de certains systèmes quantiques à grand nombre de particules. Dans la première partie, après avoir rappelé brièvement le contexte physique, on s’intéressera au problème de l’existence d’un état fondamental, c’est-à-dire l’existence d’un état minimisant la fonctionnelle d’énergie. L’approche pour résoudre ce problème de minimisation sous contrainte repose sur des arguments développés par Lions dans les années 80, de type concentration-compacité.


Séminaire : Renormalisation ultraviolette pour un modèle jouet de la théorie des champs

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 11 March 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Benjamin Alvarez Résumé :

Des divergences apparaissent lorsque l’on cherche à effectuer des calculs en théorie des champs quantiques (comme par exemple pour la section efficace de diffusion). Il est donc essentiel de recourir à une procédure, nommée renormalisation, pour retirer ces divergences de nos modèles et obtenir des prédictions vérifiables expérimentalement.

En mathématiques, on peut décrire les modèles de théorie des champs par un Hamiltonien agissant sur un espace de Fock et dont le noyau n’est pas de carré intégrable. La procédure généralement suivie est d’abord d’introduire des coupures ultraviolettes permettant de régulariser le noyau. Ensuite, il faut démontrer que cet opérateur régularisé auquel on a soustrait un terme de compensation, converge vers un opérateur limite. Les termes de compensation généralement utilisés en mathématiques proviennent du premier ou des deux premiers ordres dans la théorie de la perturbation de grandeurs physiques telles que l’énergie de l’état fondamental. Dans cet exposé nous présenterons, sur un modèle jouet, une méthode permettant d’utiliser un nombre fini mais quelconque de termes de compensation, et donc d’ordre dans la théorie de la perturbation. Il s’agit d’un travail en cours en collaboration avec Jacob Møller.


Séminaire : Représentation multiéchelle d'une déformation

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 4 March 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Carole Le Guyader Résumé :

Motivated by Tadmor’s work dedicated to multiscale image representation using hierarchical (BV,L^2) decompositions, we propose transposing their approach to the case of registration, task which consists in determining a smooth deformation aligning the salient constituents visible in an image into their counterpart in another. The underlying goal is to obtain a hierarchical decomposition of the deformation in the form of a composition of intermediate deformations: the coarser one, computed from versions of the two images capturing the essential features, encodes the main structural/geometrical deformation, while iterating the procedure and refining the versions of the two images yields more accurate deformations that map faithfully small-scale features. The proposed model falls within the framework of variational methods and hyperelasticity by viewing the shapes to be matched as Ogden materials. The material behaviour is described by means of a specifically tailored strain energy density function, complemented by L^∞ penalisations ensuring that the computed deformation is a bi-Lipschitz homeomorphism. Theoretical results emphasising the mathematical soundness of the model are provided, among which the existence of minimisers, a Γ-convergence result and an analysis of a suitable numerical algorithm, along with numerical simulations demonstrating the ability of the model to produce accurate hierarchical representations of deformations.


Stabilité d’ondes planes pour l’équation de Schrödinger-Langevin

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 1 March 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Quentin Chauleur (IRMAR, Université de Rennes 1) Résumé :

Dans cet exposé, on étudiera la stabilité des ondes planes de l’équation de Schrödinger logarithmique sur le tore, avec ou sans amortissement. Le comportement de ces solutions sera notamment illustré par des simulations numériques.


Méthode d’éclatement en homogénéisation périodique (deuxième partie)

Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 1 March 2022 00:00-00:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Renata BUNOIU Résumé :

Dans cette deuxième partie, on appliquera la méthode d’éclatement à deux problèmes qui mènent à des
résultats atypiques. Le premier exemple correspond à un problème de diffusion de la chaleur dans
un milieux à deux composantes complémentaires périodiques, à l’interface imparfaite (la température
présente un saut sur cette interface). La particularité de ce problème vient du fait qu’après
homogénéisation, la température limite est donnée comme combinaison de deux températures
distinctes, chacune étant définie sur tout le domaine initial. Les deux températures vérifient un système
couplé, connu dans la littérature comme « système de Barenblatt ». Le deuxième exemple correspond à
un problème de diffusion de la chaleur à double conductivité et sa particularité vient du fait qu’après
homogénéisation, la température limite est donnée comme la somme de deux termes, le premier étant
la solution d’un problème homogénéisé classique et le deuxième étant la moyenne sur la cellule de
périodicité de la solution d’un problème local.


Méthode d’éclatement en homogénéisation périodique (première partie)

Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 22 February 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Renata BUNOIU Résumé :

Dans cette première partie, on présente la définition et quelques propriétés relatives à la méthode
d’éclatement, méthode spécifique pour l’homogénéisation de problèmes périodiques, c’est-à-dire des
problèmes pour lesquels la géométrie et/ou des caractéristiques physiques sont des fonctions
périodiques de certaines variables d’espace, la périodicité étant caractérisée par un petit paramètre
strictement positif. La présence du petit paramètre rend impossible la résolution numérique de ces
problèmes. Le processus d’homogénéisation consiste à faire tendre le petit paramètre vers zéro dans le
problème initial, ce qui conduit à l’obtention d’un problème homogénéisé. Ce problème, qui est une
bonne approximation du problème initial, peut être résolu numériquement. Il fournit ainsi une solution
approchée de la solution initiale. On va illustrer cette méthode en l’appliquant à un problème très
simple, celui de la diffusion de la chaleur dans un milieu périodique.