Upcoming presentations
Surfaces minimales et surfaces de Ricci
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 November 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Benoît Daniel (IÉCL) Résumé :Les surfaces minimales sont les surfaces qui sont points critiques de la fonctionnelle d’aire à bord fixé. Elles sont caractérisées par le fait que leur courbure moyenne est nulle. Un problème posé par Ricci est de déterminer quelles surfaces riemanniennes peuvent être immergées (localement) isométriquement comme surfaces minimales de l’espace euclidien de dimension 3. Ricci a donné une caractérisation dans le cas où la surface est à courbure strictement négative. A. et S. Moroianu ont donné une caractérisation complète sans cette hypothèse et ont introduit la notion de surface de Ricci. Nous verrons des généralisations de cette notion, nous intéresserons aux surfaces de Ricci généralisées compactes et verrons le lien avec les surfaces à courbure constante et singularités coniques. Il s’agit d’un travail en commun avec Yiming Zang.
Un crible minorant effectif pour les entiers friables
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 November 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Adrien Mounier (Aix-Marseille Université) Résumé :Soient $\mathcal{A}$ un ensemble fini d’entiers naturels non-nuls et $y \geq 1$. Nous donnons une minoration effective du cardinal de l’ensemble $\{n\in\mathcal{A} ; p|n \Rightarrow p \leq y\}$ sous la condition d’une bonne connaissance du niveau de répartition de l’ensemble $\mathcal{A}$. Quelques conséquences seront ensuite abordées, dont une application aux valeurs friables de polynômes ou de formes binaires à coefficients entiers, puis une application aux entiers friables voisins.
Journée à l'honneur de David Vogan
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 December 2024 00:00-23:59 Lieu : Oratrice ou orateur : Résumé :Une version effective du théorème des nombres premiers de Lu
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 December 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Vincent Gozé (Université du Littoral Côte d'Opale) Résumé :Soit $\pi(x)$ le nombre de nombres premiers dans l’intervalle $[1,x]$. Nous savons depuis Euclide que $\pi(x)$ tend vers l’infini, mais à quelle vitesse ? La réponse à cette question fut obtenue pour la première fois en 1896 par Jacques Hadamard et Charles-Jean de la Vallée Poussin qui démontrèrent, de manière indépendante, le théorème des nombres premiers: \[\pi(x)\sim \frac{x}{\log x}\quad(x\to \infty).\]
La démonstration de Hadamard et La Vallée Poussin utilise principalement les propriétés de la fonction zêta de Riemann et donc l’analyse complexe. Ce n’est qu’en 1949 qu’Erdős et Selberg publièrent indépendamment la première démonstration élémentaire (utilisant uniquement l’analyse réelle) du théorème des nombres premiers. Dans cet exposé, nous présenterons le développement historique des démonstrations élémentaires du théorème des nombres premiers puis nous donnerons une version effective du théorème des nombres premiers de Lu qui, à ce jour, donne le meilleur terme d’erreur en utilisant des méthodes élémentaires.
Pause pour arbre de Noël GNC à Orléans
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 December 2024 14:15-15:15 Lieu : Oratrice ou orateur : Résumé :Sur une généralisation des puissances d'un entier (``powered numbers''). Application à un problème additif.
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 December 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Olivier Robert (Institut Camille Jordan) Résumé :La notion de fonction puissance d’un nombre entier, introduite par Mazur (2000) fait intervenir le noyau (ou radical) d’un entier. Cette fonction lui permet de définir une généralisation des puissances (“powered numbers”). Après avoir rappelé des résultats récents sur le noyau d’un entier, nous présenterons des résultats nouveaux sur la fonction de répartition des puissances généralisées, ainsi que sur un problème additif concernant la représentation d’un entier comme somme de puissances généralisées. Ce travail a été réalisé en collaboration avec J. Brüdern.
Pierre Bieliavksy -- titre à venir
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 February 2025 14:14-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bieliavsky (Louvain-la-Neuve) Résumé :Past presentations
Le douzième moment de séries L de Dirichlet avec module friable
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 November 2018 14:30-15:30 Lieu : Oratrice ou orateur : Ramon Moreira Nunes Résumé :Résumé
Suppression exponentielle de l'incertitude quantique des courants dans la limite macroscopique
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 November 2018 14:15-15:15 Lieu : Oratrice ou orateur : Antsa Ratsimanetrimanana Résumé :Le besoin croissant de composants électroniques plus petits a récemment suscité l’intérêt pour l’étude de la théorie de la conductivité classique à l’échelle atomique o๠les effets quantiques devraient dominer. En 2012, les mesures expérimentales de la résistance électrique de fils en Silicium (Si) dopés aux atomes de phosphore ont démontré que les effets quantiques sur le transport de charge disparaissent presque pour des fils de longueur supérieure à quelques nanomètres. Et ceci même à très basse température (4,2 K). Nous démontrons mathématiquement que, dans le cas de fermions non soumis à une interaction (free-fermions) évoluant sur un réseau cristallin (avec désordre), l’incertitude quantique de la densité de courant électrique microscopique autour de leurs valeurs macroscopiques (classiques) décroit de manière exponentiellement par rapport au volume de la région du réseau o๠le champ électrique est appliqué. Ceci est en accord avec l’observation expérimentale ci-dessus. Le désordre au sein du réseau est modélisé par un potentiel externe aléatoire avec des amplitudes aléatoires et à valeurs complexes. Le célèbre “Anderson tight-binding model” est un exemple particulier du cas considéré ici. Notre analyse mathématique est basée sur les estimations de Combes-Thomas (1973), le théorème ergodique d’Akcoglu-Krengel et le formalisme des grandes déviations, en particulier le théorème de Gärtner-Ellis.
Vector space duality and unit groups of weakly complete algebras
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 8 November 2018 15:30-16:30 Lieu : Oratrice ou orateur : Rafael Dahmen Résumé :The category of weakly complete vector spaces is dual to the category of abstract vector spaces. This fact which is itself easy to verify allows to transfer problems from topological algebra to abstract algebra and vice versa. In this talk, I will explain how to use this duality to analyze unit groups of weakly complete algebras and how to construct the coresponding left adjoint functor, which assigns to each topological group in a natural way a weakly complete algebra, generalizing the group algebra for finite groups. This project is joint work with K. H. Hofmann and S. Morris.
La fonction zêta de Riemann: ses zéros, son ordre de grandeur, et la répartition de ses valeurs dans la bande critique.
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 8 November 2018 14:15-15:15 Lieu : Oratrice ou orateur : Youness Lamzouri Résumé :Je commencerai par un survol de la théorie de la fonction zêta de Riemann et de son importance en théorie des nombres. Je présenterai ensuite une sélection des avancées majeures concernant les zéros et l’ordre de grandeur de la fonction zêta. Je terminerai par des résultats récents concernant la répartition de ses valeurs dans la bande critique, obtenus en partie en collaboration avec Steve Lester et Maksym Radziwill.
Familles exhaustives et Idéaux primitifs d'une C*-algèbre produit croisé II
Catégorie d'évènement : Groupe de travail Géométrie non commutative Date/heure : 25 October 2018 16:00-17:30 Lieu : Oratrice ou orateur : Jérémy Mougel Résumé :Je commencerai par quelques mots sur l’espace des idéaux primitifs d’une C*-algèbre. Puis, j’introduirai différentes familles de morphismes utiles pour caractériser le spectre des éléments d’une C*-algèbre, en particulier les familles exhaustives. Lorsqu’on veut montrer qu’une famille de morphismes est exhaustive, il est nécessaire de bien connaitre l’espace des idéaux primitifs. En m’appuyant sur les résultats de Williams, je donnerai une description de l’espace des idéaux primitifs lorsque la C*-algèbre est issue d’un produit croisé pour lequel le C* système dynamique associé a de bonnes propriétés topologiques. Grâce à cette description, on peut construire facilement une famille exhaustive.
Double extensions of Lie superalgebras in characteristic 2
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 25 October 2018 14:15-15:15 Lieu : Oratrice ou orateur : Sofiane Bouarroudj Résumé :A Lie algebra with a non-degenerate invariant symmetric bilinear form will be called a nis-Lie algebra. The double extension of a Lie (super)algebra with a homogenous non-degenerate symmetric invariant bilinear form is the result of simultaneously adding to it a central element and an outer derivation so that the larger algebra is also nis. We consider double extensions of Lie superalgebras in characteristic 2, and concentrate on peculiarities of these notions related with the possibility for the bilinear form and the derivation to be odd. Two Lie superalgebras have been discovered by this method indigenous to the characteristic 2 case.
18 & 19 octobre 2018. Cliquez sur le lien ArXiv pour accéder au site internet.
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 October 2018 13:30-18:00 Lieu : Oratrice ou orateur : Journées SL2R Résumé :C'est quoi l'analogue du Théorème de Mà¼ntz-Szà¡sz pour un groupe de Lie?
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 17 October 2018 16:00-17:00 Lieu : Oratrice ou orateur : Ali Baklouti Résumé :La première partie de l’exposé consiste à rappeler le Théorème de Mà¼ntz-Szà¡sz sur la droite réelle, lié à l’approximation des fonctions continues sur un intervalle par des fonctions polynomiales. Ensuite je vais définir un analogue à ce théorème dans le cadre de certaines extensions compactes de groupes de Lie nilpotents.
Familles exhaustives et Idéaux primitifs d'une C*-algèbre produit croisé
Catégorie d'évènement : Groupe de travail Géométrie non commutative Date/heure : 11 October 2018 14:15-16:00 Lieu : Oratrice ou orateur : Mougel Jérémy Résumé :Je commencerai par quelques mots sur l’espace des idéaux primitifs d’une C*-algèbre. Puis, j’introduirai différentes familles de morphismes utiles pour caractériser le spectre des éléments d’une C*-algèbre, en particulier les familles exhaustives. Lorsqu’on veut montrer qu’une famille de morphismes est exhaustive, il est nécessaire de bien connaitre l’espace des idéaux primitifs. En m’appuyant sur les résultats de Williams, je donnerai une description de l’espace des idéaux primitifs lorsque la C*-algèbre est issue d’un produit croisé pour lequel le C* système dynamique associé a de bonnes propriétés topologiques. Grâce à cette description, on peut construire facilement une famille exhaustive.