L'IECL

Séminaire des doctorants

Abonnement iCal : iCal

Exposés à venir

Exposés passés

Théorie de la diffusion pour le modèle optique nucléaire

20 octobre 2021 10:45-11:45 -
Oratrice ou orateur : Nicolas Frantz
Résumé :
Lorsqu’un neutron est envoyé sur un noyau cible, il peut se produire deux situations après l’interaction : Le neutron peut être absorbé par le noyau ou il peut-être diffusé de façon élastique. En 1954, Fesbach, Porter et Weisskopf proposent un modèle mathématique appelé modèle optique nucléaire qui rend compte de ce phénomène. La force exercé par le neutron sur le noyau est modélisé par un pseudo-hamiltonien dont l’évolution dans le temps est décrite par l’équation de Schrödinger. Si le neutron est dans un état où sa probabilité de diffusion est strictement positive, on s’attend à ce qu’il existe un état dit « de diffusion » tel que le comportement du neutron dans cet état soit après un temps infiniment grand celui de la dynamique libre.
Je commencerai mon exposé par expliquer comment un système physique se modélise mathématiquement. Nous verrons ensuite comment cela s’applique au modèle optique nucléaire. Enfin j’expliquerai quelques rudiments de théorie de la diffusion, notamment les notions d’opérateurs d’onde et de complétude asymptotique.

Soutenance blanche de Gabriel Sevestre

15 juin 2021 15:00-16:00 -
Oratrice ou orateur : Gabriel Sevestre
Résumé :

Operateurs de Schrödinger semi-classiques et estimées Lp.

14 avril 2021 14:00-15:00 -
Oratrice ou orateur : Nhi Ngoc Nguyen
Résumé :

Les opérateurs de Schrödinger sont des incontournables dans la mécanique
quantique. J’exposerai d’abord des motivations physiques de l’étude
spectrale de ces objets. Plusieurs auteurs ont obtenu des bornes en
norme Lp sur les quasi-modes des opérateurs de Schrödinger. On verra
ensuite comment se généralisent de telles estimées à des systèmes
orthonormés de fonctions. L’idée de l’exposé est de donner un avant-goût
des jolis outils sous-jacents.


Rates of convergence to the local time of sticky diffusions.

7 avril 2021 14:00-15:00 -
Oratrice ou orateur : Alexis Anagnostakis
Résumé :
Dans ce travail on trouve une suite de processus qui converge vers le temps local d une diffusion avec un point collant.
On commence par définir cette classe de processus à comportement erratique autour d’un point.
Après on introduit la notion du temps local avec les résultats d approximations pour des diffusion régulières.
On présentera les résultats pour le mouvement Brownien collant et on vera ce que ça implique sur la signification du temps local.
On finira par une application de ce résultat.

Titre à venir

17 mars 2021 14:00-15:00 -
Oratrice ou orateur : Mihai-Cosmin Pavel
Résumé :

Résumé à venir


An introduction to moduli spaces

17 mars 2021 14:00-15:00 -
Oratrice ou orateur : Mihai-Cosmin Pavel (IECL, Nancy)
Résumé :

In modern algebraic geometry, the study of moduli spaces plays a central role in the problem of classifying certain geometric objects (e.g., Riemann surfaces, vector bundles), up to a fixed notion of isomorphism. The foremost question arising is whether we can construct a moduli space which, roughly speaking, parametrizes the isomorphism classes of such objects. The moduli space will be endowed with a natural geometric structure, which is often a scheme or an algebraic stack. In this talk we give an introduction in the theory of moduli spaces, with special emphasis on some classical examples: the Grassmannian, the Hilbert scheme, the moduli space of sheaves etc.. We will formulate the moduli problems using the categorical language of representable functors, and introduce the notions of fine and coarse moduli spaces.


Introduction to Stochastic Approximation on Geometrical Spaces Generalizing Gradient Descent Algorithms

3 mars 2021 14:00-15:00 -
Oratrice ou orateur : Pablo Jimenez Moreno (CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique)
Résumé :

Stochastic Approximation is a useful tool for Machine Learning techniques such as Stochastic Gradient Descent. These algorithms are applied to a lot of different fields, improving the transportation times, helping doctors diagnosing with medical images, automatically translating text, detecting spam and more. Most of the time, the model traditionally lies in a vector space. However, some problems present non-linear constraints, that can be translated into a manifold. This framework ensures the conservation of key properties. As an introduction to geometric machine learning, we study the gradient descent algorithm, and its adaptation to Riemannian manifolds. Finally, we compare the performance of the two, introducing new non-asymptotic bounds.


Modèles d'appariement aléatoire et allocations des greffes: de la théorie à la pratique.

17 février 2021 14:00-15:00 - Salle de conférences Nancy
Oratrice ou orateur : Thomas Masanet (IECL, Nancy)
Résumé :

À venir


Modèles d'appariement aléatoire et allocations des greffes: de la théorie à la pratique.

17 février 2021 14:00-15:00 -
Oratrice ou orateur : Thomas Masanet
Résumé :

En France la liste d’attente pour la greffe d’organe est nationale. La question de la décision autour de l’attribution d’un greffon est donc très importante. Dans cet exposé je vous présenterai l’approche théorique d’un tel problème à l’aide des modèles d’appariement avec impatience et je détaillerai l’évolution des simulations de ce problème, au fur et à mesure des interactions avec l’agence de la biomédecine.


Courses de polynômes irréductibles unitaires dans les corps de fonctions à 3 compétiteurs ou plus.

20 janvier 2021 14:00-15:00 -
Oratrice ou orateur : Youssef Sedrati
Résumé :

Cette présentation concerne l’étude des courses de polynômes irréductibles unitaires dans les corps de fonctions à (3) compétiteurs ou plus. Plus concrètement, soit (m in F_{q}[T]) un polynôme unitaire (avec (F_{q}) un corps à (q) éléments et (q) une puissance d’un premier (>2)) de degré (M geq 2), (r) un entier (geq 3). Pour (a in F_q[T]) premier avec (m) et pour (N in mathbb{N^{*}}), on désigne par (pi(a,m,N)) le nombre de polynômes irréductibles unitaires congrus à (a ) et de degré (N). On considère (A_{r}(m) ) l’ensemble des (r)-uplets des différents éléments ((a’_1,..,a’_r) in F_{q}[T]) modulo (m) qui sont premiers avec (m.) Pour ((a_1,..,a_r) in A_{r}(m)), on définit :
begin{align*}
P_{m;a_1,..,a_r} &:= left{ X in mathbb{N}^{*} : hspace{0,2cm}
sumlimits_{N=1}^{X} pi(a_1,m,N) > …> sumlimits_{N=1}^{X} pi(a_r,m,N)
right}
end{align*}
Ainsi, sous l’hypothèse LI, pour réaliser cette étude, il suffit d’étudier la densité naturelle suivante :
begin{align*}
delta_{m;a_1,..,a_r} :&= limlimits_{X longrightarrow +infty} frac{# left( P_{m;a_1,..,a_r} cap left{1,2,.., Xright} right)}{X}
end{align*}

Il s’agit d’analyser les différentes densités afin de déterminer l’équipe gagnante.


Optimal Breaking Tests in a Class of CHARN Models

1 décembre 2020 14:00-15:00 -
Oratrice ou orateur : Youssef Salman
Résumé :

In statistical analysis, change point detection aims to identify the times when the probability distribution of a stochastic process or a time series, or the parameter of the time series models changes. In general, the problem concerns both detecting the changes and identifying their locations. My goal is not only to detect the big breakpoint, but also, the detection of the small changes. The likelihood ratio test is used to detect these changes (small and big changes). The distribution
under the null and the alternatives hypothesis of the test was did by the LAN property (Locally asymptotic normal) and the Le Cam’s third lemma. The optimality of the test was proved at the end of the job.


Approche probabiliste pour la modélisation de l’hétérogénéité métabolique bactérienne

25 novembre 2020 14:00-15:00 -
Oratrice ou orateur : Josué Tchouanti Fotso
Résumé :

Les travaux de Charles Darwin sur l’évolution ont motivé de longues recherches sur les effets des mutations génétiques et de la sélection naturelle. Cependant, les avancées techniques ont récemment permis aux biologistes de s’apercevoir qu’à l’échelle individuelle et sur une échelle temps plus courte que l’échelle évolutive, l’expression des gènes impliqués dans le métabolisme bactérien est hétérogène.

Nous proposons dans cet exposé quelques approches de modélisation plus ou moins simples soutenues par des hypothèses biologiques, partant d’une formalisation des mécanismes majeurs qui ont lieu à l’intérieur de la cellule bactérienne à une description des dynamiques globales pour des cultures en grande population.


Bayesian statistical analysis of hydrogeochemical data using point processes: a new tool for source detection in multi-component fluid mixtures

4 novembre 2020 14:00-15:00 -
Oratrice ou orateur : Christophe Reype
Résumé :

Hydrogeochemical data may be seen as a point cloud in a multi-dimensional space. Each dimension of this space represents a hydrogeochemical parameter ( i.e. salinity, solute concentration, concentration ratio, isotopic composition…). While the composition of many geological fluids is controlled by mixing between multiple sources, a key question related to hydrogeochemical dataset is the detection of the sources. By looking at the hydrogeochemical data as spatial data, this work presents a new solution to the source detection problem that is based on point processes. Results are shown on simulated and real data from geothermal fluids.


Étude de la stabilité du cœur d'un jeu coalitionnel

21 octobre 2020 14:00-15:00 -
Oratrice ou orateur : Dylan Laplace Mermoud
Résumé :

La théorie des jeux coalitionnels est la partie de la théorie des jeux qui s’intéresse à la formation de coalitions. Son but est de proposer des concepts de solutions qui satisfont plusieurs propriétés : anonymat, symétrie, efficacité entre autres. En 1944, von Neumann et Morgenstern propose le concept des « ensembles stables », définis comme l’ensemble des solutions desquelles nous n’allons pas dévier. En 1959, Gillies propose le concept de « cœur », défini comme l’ensemble des solutions qui donnent à chacun au moins ce qu’il mérite, en fonction des rapports de forces qui s’appliquent au sein du jeu. Chacun de ces concepts a ses inconvénients : les ensembles stables ne sont pas uniques et sont très difficiles à calculer, le cœur quant à lui ne propose pas un ensemble de solutions stables. L’idéal serait d’avoir un cœur stable: dans ce cas il serait unique, facile à calculer et chaque solution satisferait tous les joueurs qui ne vont pas dévier de celle-ci. Cependant, savoir si un jeu admet un cœur stable ou non est un problème très complexe.


Mesures de complexités pour suites pseudo-aléatoires

7 octobre 2020 14:00-15:00 -
Oratrice ou orateur : Pierre Popoli
Résumé :

Il existe plusieurs mesures de complexité pour les suites qui établissent des critères pour évaluer si une suite peut être considérée comme pseudo-aléatoire. Nous verrons que les suites automatiques, déterminées par un automate fini déterministe, comme la suite de Thue-Morse, ne rentrent pas dans cette catégorie car leur complexité en sous-mots fait défaut. Cependant, de récents résultats montrent que cette même suite, raréfiée le long des carrés, semble être un meilleur candidat pour être une suite pseudo-aléatoire. Dans cet exposé je parlerai de la généralisation de la borne inférieure de la complexité d’ordre maximal à toute une famille de suites automatiques, comprenant la suite de Rudin-Shapiro par exemple, le long de sous-suites polynomiales. Je terminerai en évoquant la représentation de Zeckendorf et de sa fonction somme des décimales qui rentre dans un cadre plus général que les suites automatiques.


Opérateurs elliptiques, régularité et indice

16 juin 2020 14:00-15:00 -
Oratrice ou orateur : Rémi Côme
Résumé :

Le Laplacien sur ℝⁿ possède une propriété très forte de régularité a priori : si Δu est infiniment dérivable, alors u l’est également. Cette propriété est caractéristique des opérateurs dits « elliptiques », dont l’introduction sera l’objet de mon exposé. Sur les variétés compactes en particulier, l’étude de ces opérateurs a culminé dans la seconde moitié du XXè siècle avec le théorème de l’indice d’Atiyah et Singer, dont j’essaierai d’expliquer la portée. Je terminerai en montrant que ces deux propriétés ne tiennent plus, ou alors différemment, sur des espaces singuliers ou non compacts.


Introduction aux groupoïdes

9 juin 2020 14:00-15:00 -
Oratrice ou orateur : Fabien Bessière
Résumé :

Les groupoïdes généralisent de nombreuses notions mathématiques : groupes, espaces topologiques, relations d’équivalences, action de groupes. On peut associer à tout groupoïde, une C*-aglèbre qui « encode » la structure de groupoïdes. Les groupoïdes agissent sur des objets fibrés. Par analogie des actions de groupes sur une C*-algèbre, les groupoïdes vont agir sur des C_{0}(X)-algèbres : ce sont des fibrés de C*-algèbres. Je présenterai les propriétés généralent des groupoïdes, la construction de la C*-algèbre d’un groupoïde et enfin rapidement la notion de C_0(X)-algèbres.


L’analyse harmonique : une généralisation de Fourier

2 juin 2020 14:00-15:00 -
Oratrice ou orateur : Simon Roby
Résumé :

L’analyse harmonique vise à décomposer les phénomènes (souvent des fonctions) en constituantes plus simple à analyser, appelées « signaux ». Après avoir analysé ces constituantes, on recompose la fonction d’origine en essayant de conserver certaines propriétés. C’est donc l’approfondissement et la généralisation des concepts de série et transformée de Fourier. Elle a été largement appliquée en physique (elle vient en fait du questionnement des physiciens comme souvent au XXème siècle) : traitement des signaux, mécanique quantique, neurosciences. Nous verrons dans cet exposé comment généraliser ce concept aux groupes de Lie (appelé analyse harmonique sur les groupes de Lie) et quels sont les résultats connus aujourd’hui. Le lien avec les représentations des groupes sera aussi abordé.


(C^*)-algèbre d’un groupoïde

11 mars 2020 14:00-15:00 -
Oratrice ou orateur : Fabien Bessière
Résumé :

Les groupoïdes généralisent de nombreuses notions mathématiques : groupes, espaces topologiques, relations d’équivalences, action de groupes. On peut associer à tout groupoïdes, une (C^*)-algèbre qui « encode » la structure de groupoïdes. Les groupoïdes agissent sur des objets fibrés. Par analogie des actions de groupes sur une (C^*)-algèbre, les groupoïdes vont agir sur des (C_0(X))-algèbres : ce sont des fibrés de (C^*)-algèbres. Je présenterai les propriétés générales des groupoïdes, la construction de la (C^*)-algèbre d’un groupoïde et enfin rapidement la notion de (C_0(X))-algèbres.


Lie infinie algebroides et feuilletages singuliers

4 mars 2020 14:00-15:00 -
Oratrice ou orateur : Ruben Louis
Résumé :

Le but de cet exposé est d’introduire la notion de L-infty algebroides et faire le lien avec les feuilletage singuliers. Je commencerai par rappeler la définition de L-infty algèbres (vu comme une généralisation des algèbres de Lie) et illustrer quelques exemples. Ensuite j’introduirai la définition de Lie infinie algebroides et présenter quelques resutats reliant les Lie infinie algebroides et les feuilletage singuliers.

Toute Lie infinie algebroides induit un feuilletage singuliers F (l’image de l’ancre). Une question naturelle est se demander si tout feuilletages singuliers provient d’une Lie infinie algébroide (lorsqu’elle existe on l’appelle « Lie infinie algébroide universelle de F »). Cette question en partie reste ouverte en revanche on connaît des cas où c’est toujours possible: dans le cas lisse, l’existence d’une résolution géométrique du feuilletage singulier est suffisant; dans le cas (localement ) analytique ou holomorphe elle existe toujours dans un voisinage de tout point de la variété. Cette Lie infinie algébroide lorsqu’elle existe elle est unique à homotopie près, ce qui justifie le nom « Lie infinie algébroide universelle ».


1 2 3 4 5 6 7 8 9 10