L'IECL

Séminaire des doctorants

Séminaire des doctorants

Abonnement iCal : iCal

Exposés à venir

Aucun évènement dans cette catégorie

Exposés passés

Bayesian statistical analysis of hydrogeochemical data using point processes: a new tool for source detection in multi-component fluid mixtures

4 novembre 2020 14:00-15:00 -
Oratrice ou orateur : Christophe Reype
Résumé :

Hydrogeochemical data may be seen as a point cloud in a multi-dimensional space. Each dimension of this space represents a hydrogeochemical parameter ( i.e. salinity, solute concentration, concentration ratio, isotopic composition…). While the composition of many geological fluids is controlled by mixing between multiple sources, a key question related to hydrogeochemical dataset is the detection of the sources. By looking at the hydrogeochemical data as spatial data, this work presents a new solution to the source detection problem that is based on point processes. Results are shown on simulated and real data from geothermal fluids.


Étude de la stabilité du cœur d'un jeu coalitionnel

21 octobre 2020 14:00-15:00 -
Oratrice ou orateur : Dylan Laplace Mermoud
Résumé :

La théorie des jeux coalitionnels est la partie de la théorie des jeux qui s’intéresse à la formation de coalitions. Son but est de proposer des concepts de solutions qui satisfont plusieurs propriétés : anonymat, symétrie, efficacité entre autres. En 1944, von Neumann et Morgenstern propose le concept des « ensembles stables », définis comme l’ensemble des solutions desquelles nous n’allons pas dévier. En 1959, Gillies propose le concept de « cœur », défini comme l’ensemble des solutions qui donnent à chacun au moins ce qu’il mérite, en fonction des rapports de forces qui s’appliquent au sein du jeu. Chacun de ces concepts a ses inconvénients : les ensembles stables ne sont pas uniques et sont très difficiles à calculer, le cœur quant à lui ne propose pas un ensemble de solutions stables. L’idéal serait d’avoir un cœur stable: dans ce cas il serait unique, facile à calculer et chaque solution satisferait tous les joueurs qui ne vont pas dévier de celle-ci. Cependant, savoir si un jeu admet un cœur stable ou non est un problème très complexe.


Mesures de complexités pour suites pseudo-aléatoires

7 octobre 2020 14:00-15:00 -
Oratrice ou orateur : Pierre Popoli
Résumé :

Il existe plusieurs mesures de complexité pour les suites qui établissent des critères pour évaluer si une suite peut être considérée comme pseudo-aléatoire. Nous verrons que les suites automatiques, déterminées par un automate fini déterministe, comme la suite de Thue-Morse, ne rentrent pas dans cette catégorie car leur complexité en sous-mots fait défaut. Cependant, de récents résultats montrent que cette même suite, raréfiée le long des carrés, semble être un meilleur candidat pour être une suite pseudo-aléatoire. Dans cet exposé je parlerai de la généralisation de la borne inférieure de la complexité d’ordre maximal à toute une famille de suites automatiques, comprenant la suite de Rudin-Shapiro par exemple, le long de sous-suites polynomiales. Je terminerai en évoquant la représentation de Zeckendorf et de sa fonction somme des décimales qui rentre dans un cadre plus général que les suites automatiques.


Opérateurs elliptiques, régularité et indice

16 juin 2020 14:00-15:00 -
Oratrice ou orateur : Rémi Côme
Résumé :

Le Laplacien sur ℝⁿ possède une propriété très forte de régularité a priori : si Δu est infiniment dérivable, alors u l’est également. Cette propriété est caractéristique des opérateurs dits « elliptiques », dont l’introduction sera l’objet de mon exposé. Sur les variétés compactes en particulier, l’étude de ces opérateurs a culminé dans la seconde moitié du XXè siècle avec le théorème de l’indice d’Atiyah et Singer, dont j’essaierai d’expliquer la portée. Je terminerai en montrant que ces deux propriétés ne tiennent plus, ou alors différemment, sur des espaces singuliers ou non compacts.


Introduction aux groupoïdes

9 juin 2020 14:00-15:00 -
Oratrice ou orateur : Fabien Bessière
Résumé :

Les groupoïdes généralisent de nombreuses notions mathématiques : groupes, espaces topologiques, relations d’équivalences, action de groupes. On peut associer à tout groupoïde, une C*-aglèbre qui « encode » la structure de groupoïdes. Les groupoïdes agissent sur des objets fibrés. Par analogie des actions de groupes sur une C*-algèbre, les groupoïdes vont agir sur des C_{0}(X)-algèbres : ce sont des fibrés de C*-algèbres. Je présenterai les propriétés généralent des groupoïdes, la construction de la C*-algèbre d’un groupoïde et enfin rapidement la notion de C_0(X)-algèbres.


L’analyse harmonique : une généralisation de Fourier

2 juin 2020 14:00-15:00 -
Oratrice ou orateur : Simon Roby
Résumé :

L’analyse harmonique vise à décomposer les phénomènes (souvent des fonctions) en constituantes plus simple à analyser, appelées « signaux ». Après avoir analysé ces constituantes, on recompose la fonction d’origine en essayant de conserver certaines propriétés. C’est donc l’approfondissement et la généralisation des concepts de série et transformée de Fourier. Elle a été largement appliquée en physique (elle vient en fait du questionnement des physiciens comme souvent au XXème siècle) : traitement des signaux, mécanique quantique, neurosciences. Nous verrons dans cet exposé comment généraliser ce concept aux groupes de Lie (appelé analyse harmonique sur les groupes de Lie) et quels sont les résultats connus aujourd’hui. Le lien avec les représentations des groupes sera aussi abordé.


(C^*)-algèbre d’un groupoïde

11 mars 2020 14:00-15:00 -
Oratrice ou orateur : Fabien Bessière
Résumé :

Les groupoïdes généralisent de nombreuses notions mathématiques : groupes, espaces topologiques, relations d’équivalences, action de groupes. On peut associer à tout groupoïdes, une (C^*)-algèbre qui « encode » la structure de groupoïdes. Les groupoïdes agissent sur des objets fibrés. Par analogie des actions de groupes sur une (C^*)-algèbre, les groupoïdes vont agir sur des (C_0(X))-algèbres : ce sont des fibrés de (C^*)-algèbres. Je présenterai les propriétés générales des groupoïdes, la construction de la (C^*)-algèbre d’un groupoïde et enfin rapidement la notion de (C_0(X))-algèbres.


Lie infinie algebroides et feuilletages singuliers

4 mars 2020 14:00-15:00 -
Oratrice ou orateur : Ruben Louis
Résumé :

Le but de cet exposé est d’introduire la notion de L-infty algebroides et faire le lien avec les feuilletage singuliers. Je commencerai par rappeler la définition de L-infty algèbres (vu comme une généralisation des algèbres de Lie) et illustrer quelques exemples. Ensuite j’introduirai la définition de Lie infinie algebroides et présenter quelques resutats reliant les Lie infinie algebroides et les feuilletage singuliers.

Toute Lie infinie algebroides induit un feuilletage singuliers F (l’image de l’ancre). Une question naturelle est se demander si tout feuilletages singuliers provient d’une Lie infinie algébroide (lorsqu’elle existe on l’appelle « Lie infinie algébroide universelle de F »). Cette question en partie reste ouverte en revanche on connaît des cas où c’est toujours possible: dans le cas lisse, l’existence d’une résolution géométrique du feuilletage singulier est suffisant; dans le cas (localement ) analytique ou holomorphe elle existe toujours dans un voisinage de tout point de la variété. Cette Lie infinie algébroide lorsqu’elle existe elle est unique à homotopie près, ce qui justifie le nom « Lie infinie algébroide universelle ».


Méthodes de décomposition de domaine pour la simulation acoustique industrielle

3 mars 2020 14:00-15:00 -
Oratrice ou orateur : Philippe Marchner
Résumé :

Dans le cadre de ma thèse, je m’intéresse à la simulation haute-fréquence de problèmes ondulatoires harmoniques en milieu non-homogène, qui posent d’importantes difficultés tant au niveau numérique que mathématique. D’un point de vue physique, ces problèmes décrivent la propagation d’ondes acoustiques en écoulement, aussi appelée aéroacoustique.

L’objectif principal est de développer une méthode de calcul parallèle efficace, dite de décomposition de domaine. Le principe est de partitionner le domaine de calcul en sous-domaines, puis d’itérer sur un problème défini aux interfaces qui connecte ces sous-domaines. La convergence de cette méthode dépend fortement de conditions de transmission définies aux interfaces.

Après vous avoir présenté le cadre de l’étude, je vous parlerai des outils mathématiques utilisés pour la construction de conditions de transmission appropriées. Ces outils sont issus de l’analyse microlocale et sont appliqués à l’opérateur Dirichlet-To-Neumann. Ensuite, je vous montrerai une application de la méthode pour un problème industriel 3D: le rayonnement acoustique d’un turboréacteur d’avion.


Introduction à la théorie du scattering unitaire

28 janvier 2020 14:00-15:00 -
Oratrice ou orateur : Nicolas Frantz
Résumé :

A un système quantique, on associe un espace de Hilbert. L’équation de Schrödinger sur cet espace permet d’étudier l’évolution des états de ce système dans le temps. Dans le cas où l’opérateur de Schrödinger est auto-adjoint, la solution de l’équation est donnée par un groupe unitaire. Les états asymptotiquement libres (c’est-à-dire se comportant en temps infini comme s’il n’y avait aucune interaction) correspondent au sous espace spectral absolument continu associé à l’opérateur de Schrödinger. Physiquement, on souhaite que l’image d’un état asymptotiquement libre par le groupe reste asymptotiquement libre. C’est ce qu’on appelle la complétude asymptotique.

Dans un premier temps je décrirai les axiomes qui permettent de décrire un système quantique. J’expliquerai ensuite quelque point de théorie spectrale ce qui nous permettra de définir les opérateurs d’ondes et de donner une définition mathématique de complétude asymptotique.


Introduction aux feuilletages

21 janvier 2020 14:00-15:00 -
Oratrice ou orateur : Kévin Massard
Résumé :

Intuitivement, un feuilletage est une partition d’une variété (M) en sous-variétés connexes de même dimension, appelées feuilles. On peut s’intéresser à l’espace des feuilles, défini comme le quotient de (M) par la relation d’équivalence (mathcal{R}) qui identifie deux points de (M) s’ils sont une une même feuille. Cependant, cet espace peut être très singulier. On construit alors le groupoïde d’holonomie, groupoïde de Lie qui contient (mathcal{R}). Nous illustrerons ces notions avec quelques exemples simples.


Le problème de Dirichlet sur des domaines singuliers

14 janvier 2020 14:00-15:00 -
Oratrice ou orateur : Rémi Cöme
Résumé :

Le problème de Dirichlet sur un domaine lisse et borné (Omega subset mathbb{R}^n) est bien posé : il existe toujours une unique solution, et celle-ci possède la plus grande régularité possible. Lorsque (Omega) n’est pas lisse, par exemple pour un polyhèdre, cette dernière propriété n’est plus vraie. En faisant un changement de variable qui envoie la singularité « à l’infini », je montrerai comment des résultats sur des variétés non-compactes permette de retrouver cette régularité.
Ce sera l’occasion d’évoquer quelques outils fondamentaux de l’analyse fonctionnelle : théorème de Lax-Milgram, inégalité de Poincaré…


Plus d'informations à https://dev-iecl.univ-lorraine.fr/GTD/web/journeedoc

29 novembre 2019 14:00-15:00 -
Oratrice ou orateur : Journée des doctorants
Résumé :

Le spectre des surfaces aléatoires

12 novembre 2019 14:00-15:00 -
Oratrice ou orateur : Laura Monk
Résumé :

Le laplacien est un opérateur différentiel qui apparaît dans de nombreux problèmes physiques. Ses valeurs propres correspondent, par exemple, aux notes que l’on entend lorsque l’on tape sur un tambour. Elles sont fortement liées à la géométrie de l’objet qu’on étudie (aire, périmètre, longueur de certaines courbes…). L’objectif de ma thèse est de proposer une manière intuitive et pratique de choisir des surfaces aléatoirement, et de donner des informations sur la répartition des valeurs propres du laplacien sur ces surfaces.


Existence locale et globale pour les équations d'Einstein de la relativité générale.

22 octobre 2019 14:00-15:00 -
Oratrice ou orateur : Olivier Graf
Résumé :

Les équations d’Einstein de la relativité décrivent le couplage entre le champ gravitationnel représenté par une métrique Lorentzienne g et la matière. Sous un certain choix de jauge, les équations d’Einstein peuvent s’écrire sous la forme d’un système d’EDP d’évolution, plus précisément des équations d’ondes quasilinéaires pour les composantes de la métrique (g), pour lesquelles le d’Alembertien est l’opérateur d’onde associé à la métrique Lorentzienne (g). La compréhension du comportement des solutions de ces équations en temps long est l’un des thèmes principaux de la relativité générale mathématique.

Au cours de cet exposé, je vais introduire les équations d’Einstein, expliquer certaines de leurs propriétés géométriques telles que leur covariance (de jauge) générale qui nous permettent de les considérer comme des EDP d’évolution (non-linéaires). J’expliquerai ensuite des idées générales pour aborder des résultats d’existence globaux (en temps) pour ces équations. En particulier, je soulignerai l’importance de donner du sens à des solutions à faible régularité pour obtenir des résultats d’existence globaux pour de nombreuses équations d’évolution non-linéaires.


Titre à venir

28 mai 2019 14:00-15:00 -
Oratrice ou orateur : Fiona Gottschalk
Résumé :

Résume à venir


L'utilisation des algèbres d'opérateurs dans l'étude des EDP

2 avril 2019 14:00-15:00 -
Oratrice ou orateur : Rémi Côme
Résumé :

Étant donnée une équation différentielle linéaire, une question
importante est de savoir si celle-ci admet une (unique) solution. Un
problème un peu moins contraignant est de se demander si l’équation est Fredholm, c’est à dire « presque inversible » (dans un sens qu’on
précisera). Mon but est de montrer que cette question conduit
naturellement à étudier certaines algèbres d’opérateurs (appelées (C^*)-algèbres) qui ont une structure très riche. On verra que quand
on regarde une équation différentielle sur (mathbb{R}^n), la (C^*)-algèbre associée
est commutative, ce qui fournit une réponse complète au problème.
J’essaierai d’exposer les questions plus générales qui restent ouvertes
lorsqu’on étudie des espaces moins réguliers.


Équivalence locale fondamentale du programme de Langlands

19 mars 2019 14:00-15:00 -
Oratrice ou orateur : Ruotao Yang
Résumé :

Ce court exposé porte principalement sur l’équivalence locale fondamentale (FLE) de Dennis Gaitsgory du programme quantum Langlands. Son origine est l’équivalence géométrique Satake. Afin de déformer l’équivalence d’origine, nous devons passer au modèle de Whittaker (objets (N (K), chi)-équivalents d’une catégorie). L’équivalence fondamentale veut établir une équivalence entre le modèle de Whittaker et le modèle de Kazhan-Lusztig. Dans cet exposé, je vais expliquer pourquoi les gens s’intéressent à ce programme et aux progrès récents en la matière. Si nous avons plus de temps, je me concentrerai sur mes travaux récents sur la FLE entre la catégorie Whitter tordue sur drapeau affine et la catégorie représentation mixte du groupe quantique.


Introduction to Energy in General Relativity

26 février 2019 14:00-15:00 -
Oratrice ou orateur : Allen Fang
Résumé :

Einstein’s equations have sparked much imagination in pop culture, but mathematically, are still very mysterious. In this talk, I will introduce the question of stability and long-time asymptotic behavior in mathematical relativity, beginning with the crucial result of Choquet-Bruhat that allowed Einstein’s equations to be viewed as a system of second-order hyperbolic equations. From there, I will introduce the basic concepts at the heart of the vectorfield method (which led to the pioneering work of Christodoulou and Klainerman demonstrating nonlinear stability of Minkowski space), using the free wave as the underlying motivator. Finally, I will present some brief ideas related to integrated local energy and geometric difficulties that come up when studying asymptotic behavior on non-flat spacetimes.


Structure hiérarchique : entre déterminisme et fluctuations aléatoires

29 janvier 2019 14:00-15:00 -
Oratrice ou orateur : Michel Pain
Résumé :

Je présenterai le modèle de la marche aléatoire branchante, qui est un système de particules qui alterne entre une phase de reproduction et une phase de déplacement. Cela revient à observer un grand nombre de variables aléatoires dont la structure de corrélation est donné par l’arbre généalogique de la population. Nous verrons l’influence de ces corrélations sur la position des particules les plus hautes à un instant donné, ce qui permettra de rappeler et d’illustrer les différentes notions de convergence utilisée en probabilités.


1 2 3 4 5 6 7 8 9