Archive 2022

Stochastic approximation of the paths of killed Markov processes conditioned on survival

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 6 janvier 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Oliver Tough (Université de Neuchâtel) Résumé :

Reinforced processes are known to provide a stochastic approximation for the quasi-stationary distributions of killed Markov processes. We show how the construction may be adapted to provide a stochastic approximation of the paths of killed Markov processes conditioned on survival. Whilst rigorous results are restricted to time being discrete and the state space finite, the strategy employed should be extendable to a general setting in the future.


À propos de l'espérance conditionnelle contrainte dans un domaine non convexe

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 13 janvier 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Adrien Richou (Université de Bordeaux) Résumé :

Je présenterai dans cet exposé des résultats nouveaux sur l’existence et l’unicité de solution pour des EDSRs réfléchies dans des domaines non convexes supposés « faiblement étoilés ». Notons que le cas particulier des EDSRs de générateur nul, à savoir l’espérance conditionnelle pour la filtration brownienne, est déjà un cas d’étude intéressant et permet de définir une notion de moyenne contrainte à prendre ses valeurs dans un ensemble non convexe. En particulier, on établit des résultats d’existence et d’unicité dans un cadre markovien avec une condition terminale et un générateur réguliers, mais également dans un cadre général sous une hypothèse de petitesse sur les paramètres de l’EDSR. C’est un travail en commun avec Jean-François Chassagneux (Université de Paris) et Sergey Nadtochiy (Illinois Institute of Technology).


The multi-type bisexual Galton-Watson process with superadditive mating

Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 20 janvier 2022 09:15-10:15 Lieu : Oratrice ou orateur : Nicolas Zalduendo Résumé :

The bisexual Galton-Watson process [Daley, ‘68] is an extension of the classical Galton-Watson process, but taking into account the mating of females and males, which form couples that can accomplish reproduction. Properties such as extinction conditions and asymptotic behavior have been studied in the past years, but multi-type versions have only been treated in some particular cases.

In this work we deal with a general multi-dimensional version of Daley’s model, where we consider different types of females and males, which mate according to a ‘’mating function’’. We consider that this function is superadditive, which in simple words implies that two groups of females and males will form a larger number of couples together rather than separate.

One of the main difficulties in the study of this process is the absence of a linear operator that is the key to understand its behavior in the asexual case, but in our case it turns out to be only concave. To overcome this issue, we use a concave Perron-Frobenius theory [Krause ’94] which ensures the existence of eigen-elements for some concave operators. Using this tool, we find a necessary and sufficient condition for almost sure extinction as well as a law of large numbers. Finally, we study the convergence of the process in the long-time through the identification of a supermartingale.
This is a joint work with Coralie Fritsch and Denis Villemonais.


Durées de vie extrémales en analyse topologique des données

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 20 janvier 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas Chenavier (Université du Littoral Côte d'Opale) Résumé :

L’un des principes de l’analyse topologique des données est d’étudier un ensemble de données, représentées sous forme d’un nuage de points, à partir d’outils topologiques. Un concept de base est celui de l’homologie persistante. Cette dernière mesure les naissances et les morts de diverses caractéristiques topologiques, telles que les boucles et les cavités, lorsque l’on fait grossir des boules en chaque point d’un processus de Poisson (on parle de modèle Booléen). Dans cet exposé, nous nous intéressons aux durées de vie extrémales pour de telles caractéristiques. Nous étudions d’abord le cas particulier des cavités et donnons l’ordre de grandeur du maximum (resp. du minimum) de leurs durées de vie. Une approximation poissonienne du nombre d’excédents est également établie. Nous étendons ensuite l’étude à des caractéristiques quelconques pour les complexes simpliciaux de Cech et de Vietoris-Rips. Travail joint avec C. Hirsch.


Functional data clustering with outlier detection

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 27 janvier 2022 10:45-11:45 Lieu : Salle Döblin Oratrice ou orateur : Julien Jacques (Université Lumière Lyon 2) Résumé :

With the emergence of numerical sensors in many aspects of every-day life, there is an increasing need in analyzing high frequency data, which can be seen as discrete observation of functional data.
The presentation will focus on the clustering of such functional data, in order to ease their modeling and understanding. To this end, a novel clustering technique for multivariate functional data is presented.
This method is based on a functional latent mixture model which fits the data in group-specific functional subspaces through a multivariate functional principal component analysis.
In such clustering analysis, the presence of outliers can confuse the notion of cluster.
Consequently, a contaminated version of the previous mixture model is proposed. This model both clusters the multivariate functional data into homogeneous groups and detects outliers. The main advantage of this procedure over its competitors is that it does not require us to specify the proportion of outliers.
Model inference is performed through an Expectation-Conditional Maximization algorithm, and the BIC criterion is used to select the number of clusters. Numerical experiments on simulated data demonstrate the high performance achieved by the inference algorithm. In particular, the proposed model outperforms competitors. Its application on the real data which motivated this study allows us to correctly detect abnormal behaviors.


La forêt IDLA

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 3 février 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David Coupier (Institut Mines Télécom Nord Europe) Résumé :

Le modèle IDLA (Internal Diffusion Limited Aggregation) est un modèle de croissance aléatoire sur la grille Zd introduit dans les années 90 et permettant de modéliser l’évolution d’un bassin de culture de cellules, la croissance de zones urbaines ou encore la propagation d’un fluide visqueux. C’est une suite d’ensembles aléatoires (An)n définie comme suit : A0 = {0} et, étant donné An, on lance une marche aléatoire simple depuis l’origine de Zd. Le sommet z par lequel la marche sort de l’agrégat An est ajouté pour obtenir An+1 : An+1 = An U {z}. Un arbre aléatoire se cache derrière la suite des agrégats (An)n… Afin d’étudier la géométrie de cet arbre, nous avons défini en 2020 un graphe aléatoire auxiliaire, baptisé la forêt dirigée IDLA. Ce nouvel objet possède d’intéressantes propriétés et des conjectures excitantes qui seront abordées dans cet exposé. Travail en collaboration avec N. Chenavier (ULCO) et A. Rousselle (Dijon)


Renormalisation locale pour les EDPS singulières

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 24 février 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Yvain Bruned (University of Edinburgh) Résumé :

Dans cet exposé, on présentera les outils des structures de régularité pour traiter les EDP stochastiques singulières qui ne sont pas invariantes par translation. On décrira en particulier l’équation renormalisée pour une très large classe de schémas de renormalisation dépendant de l’espace-temps. Cette approche est basée sur des renormalisations locales qui agissent directement au niveau de l’équation. L’exposé sera basé sur un travail en collaboration avec Ismaël Bailleul.


Dynamical properties of rough delay equations

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 3 mars 2022 10:45-11:45 Lieu : Lien Teams Oratrice ou orateur : Mazyar Ghani Varzaneh (Technische Universität Berlin) Résumé :

This talk aims to incorporate two subjects for developing a framework for studying the long-time behavior solution of singular delay equations. Singular delay equations fail to induce the flow property. Accordingly, for a long time, many people have believed it is not possible to apply the idea of random dynamical systems to this family of equations.
In this talk, we claim, is possible. The main trick is to regard the solution in the language of the Rough path and then construct the flow property in a bundle-like family of Banach spaces. The main challenge here is to prove the Multiplicative Ergodic Throem in this new framework. After proving this crucial theorem, we can generate the Lyapunov exponents. These exponents can be regarded as a generalization of eigenvalues. We then apply these theorems to prove the invariant manifolds in our setting. The main tools here are the rough path theory and random dynamical systems.
This talk is based on my doctoral thesis. I recently have defended my thesis in February.


Les modèles de processus ponctuel spatiotemporels avec marques extrêmes : une application aux feux de forêts en France

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 10 mars 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thomas Opitz (INRAE Avignon) Résumé :

Accurate spatiotemporal modeling of conditions leading to moderate and large wildfires provides better understanding of mechanisms driving fire-prone ecosystems and improves risk management. We here develop a joint model for the occurrence intensity and the wildfire size distribution by combining extreme-value theory and point processes within a novel Bayesian hierarchical model, and use it to study daily summer wildfire data for the French Mediterranean basin during 1995-2018. The occurrence component models wildfire ignitions as a spatiotemporal log-Gaussian Cox process. Burnt areas are numerical marks attached to points and are considered as extreme if they exceed a high threshold. The size component is a two-component mixture varying in space and time that jointly models moderate and extreme fires. We capture non-linear influence of covariates (Fire Weather Index, forest cover) through component-specific smooth functions, which may vary with season. We propose estimating shared random effects between model components to reveal and interpret common drivers of different aspects of wildfire activity. This leads to increased parsimony and reduced estimation uncertainty with better predictions. Fast approximate (but accurate) Bayesian estimation is carried out in the framework of the integrated nested Laplace approximation. Our methodology provides a holistic approach to explaining and predicting the drivers of wildfire activity and associated uncertainties.


Une méthode « sans grille » pour la reconstruction d'images

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 17 mars 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vincent Duval (INRIA Paris) Résumé :

Ces dernières années, les méthodes de reconstruction avec a priori de parcimonie (LASSO, Basis Pursuit), très utilisées en statistiques comme en traitement d’images, ont été adaptées pour opérer sur un domaine continu (Beurling Minimal extrapolation, Beurling-LASSO…): on reconstruit alors une somme de masses de Dirac plutôt qu’un vecteur parcimonieux.
Le fait de travailler sur un domaine continu apporte de nombreux avantages: absence de grille de reconstruction et des artefacts de discrétisation associés, analyse plus simple, et algorithmes tirant parti de la structure lisse du problème.

Dans cet exposé, nous nous proposons d’étendre cette démarche à la reconstruction d’objets plus complexes: plutôt que des sources ponctuelles, on veut reconstruire des images constantes par morceaux à l’aide de la régularisation par variation totale du gradient (comme dans les travaux de Rudin, Osher et Fatemi).
Nous montrons qu’en étudiant la boule unité associée, on peut décrire la structure des minimiseurs et définir un algorithme de type Frank-Wolfe « sans grille » pour la résolution du problème.
L’avantage d’une telle méthode est la préservation des bords et l’isotropie des solutions.

Il s’agit d’un travail commun avec Romain Petit et Yohann De Castro.


From quadratic harnesses, through Askey-Wilson processes and ASEPs, to identification of the stationary measure of the open KPZ equation on the interval.

Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 24 mars 2022 09:15-10:15 Lieu : Oratrice ou orateur : Jacek Wesolowski (Warsaw University of Technology) Résumé :

Quadratic harnesses (QH) are Markov processes with linear
conditional expectations and quadratic conditional variances given the
natural past-future filtration. They are governed by 5 numerical
constants hidden in coefficients of conditional variances. A large
family of QH processes can be identified through Askey-Wilson (AW)
processes, which are Markov processes with transition and marginal laws
defined in terms of orthogonality measures of the celebrated system of
the Askey-Wilson polynomials. We proved in 2017 (joint paper with W.
Bryc) that the generating function for the stationary distribution of
the ASEP (asymmetric simple exclusion process) with open boundaries can
be represented through moments of QH (and AW) processes. I.Corwin and
A.Knizel (2021) used this representation for ASEPs of growing size with
a suitable asymptotic regime to find the Laplace transform of the
stationary measure of the open Kardar-Parisi-Zhang (KPZ_) equation on
the interval. Recently (joint paper with W. Bryc, A. Kuznetsov, Y. Wang)
we « inverted » this Laplace transform and thus identified directly the
solution of the open KPZ in terms of a Doob h-transform of the Brownian
motion killed at an exponential rate.


Percolation surcritique sur les graphes à croissance polynomiale

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 24 mars 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Sébastien Martineau (LPSM, Paris) Résumé :

La percolation consiste à partir d’un graphe raisonnable G, d’un paramètre p dans [0,1] et à conserver chaque arête indépendamment avec probabilité p, effaçant toutes les autres. On s’intéresse alors aux composantes connexes du graphe ainsi formé (ces composantes sont appelées amas ou clusters). Par exemple, existe-t-il un cluster infini ?

Il existe un paramètre critique p_c, qui dépend du graphe, tel que :
– pour tout p < p_c, il n’y ait presque sûrement aucun cluster infini,
– pour tout p > p_c, il existe presque sûrement (au moins) un cluster infini.

Le régime sous-critique (p < p_c) est bien compris, et ce pour des graphes généraux. Le régime critique (p = p_c) est considérablement plus difficile : il fait l’objet de grands théorèmes et conjectures. C’est au régime restant, le surcritique (p > p_c), que sera dédié cet exposé. Ce régime est plus difficile que le sous-critique mais moins ardu que le régime critique.

Contrairement au régime sous-critique, le régime surcritique est, en un certain sens qu’on précisera, sensible à la géométrie du graphe de départ. Il est donc raisonnable de se restreindre à certaines classes de graphes définies par des hypothèses géométriques. On verra qu’en se restreignant aux graphes dits « à croissance polynomiale », il est possible d’obtenir une compréhension fine du régime surcritique. Cela permet de retrouver par des techniques nouvelles des résultats déjà connus sur le réseau cubique (Grimmett–Marstrand…), ainsi que de couvrir toute une gamme de graphes intéressants (discrétisations anisotropes de Z^d, graphes de Cayley de groupes nilpotents).

Cet exposé porte sur des travaux réalisés en collaboration avec Daniel Contreras et Vincent Tassion.


Modèles d’épidémie en dimension infinie et stratégie de vaccination optimale

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 7 avril 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dylan Dronnier (Université de Neuchâtel) Résumé :

Dans une population homogène, le nombre de reproduction de base, noté R0, est défini comme le nombre moyen de cas directement générés par une personne contagieuse quand tous les autres individus sont sains et sensibles à l’infection. Ce nombre joue un rôle fondamental en épidémiologie puiqu’il constitue un seuil qui détermine si l’épidémie va finir par disparaître (cas R0 ≤ 1) ou, au contraire, devenir endémique (cas R0 > 1).
Imaginons désormais qu’une proportion 1 − 1/R0 de la population est immunisée (en étant vaccinée par exemple). Le nombre moyen d’individus qu’infecte la personne contagieuse est alors divisé par R0. On en déduit que le nouveau nombre de reproduction, qualifié d’effectif dans ce cas, est égal à 1 : l’épidémie finira par disparaître grâce au phénomène d’immunité grégaire. Le nombre 1 − 1/R0, appelé seuil d’immunité de groupe, est souvent utilisé pour evaluer l’efficacité d’une politique de vaccination par les autorités sanitaires.
Quand les contacts dans la population ne sont plus homogènes, le nombre de reproduction de base est défini comme le nombre de cas directement générés par une personne infectée typique quand tous les autres individus sont sains et sensibles à l’infection. Le seuil d’immunité collective 1 − 1/R0 reste encore valide quand on vaccine la population uniformément. Il est cependant naturel de se demander si l’on ne pourrait pas abaisser ce seuil en ciblant certains groupes dans la population.
L’objectif de cette présentation est de proposer une formalisation mathématique de ce problème. Pour modéliser les contacts dans la population, j’utiliserai des objets issus de la théorie des limites des grands graphes. Dans la première partie de l’exposé, je présenterai un modèle hétérogène de type SIS (Susceptible → Infecté → Susceptible) avec vaccination que nous avons introduit récemment. Ce modèle servira de base pour définir les stratégies optimales de vaccination, montrer leur existence et étudier leurs propriétés de stabilité. Enfin, je donnerai une série d’exemples où les solutions du problème de vaccination optimale peuvent être exprimées de manière analytique.

Version PDF avec références


Exit time for Self-Interacting diffusions

Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 28 avril 2022 09:15-10:15 Lieu : Oratrice ou orateur : Ashot Aleksian (Université de Saint-Etienne) Résumé :

In this talk we will discuss Self-Interacting diffusions (SID), its basic properties and applications. We also discuss what constitutes the Exit-time problem, why it is important, and for which dynamical systems it was already established. We present the recent results of exit-time problem for a specific case (convex confinement and convex interaction) of SID and how they were established. In the end of the talk we discuss some ideas to generalize this result


Simulation de grands réseaux de neurones

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 28 avril 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Patricia Reynaud-Bouret (Université Côte d'Azur) Résumé :

Après avoir présenté les défis numériques actuels pour atteindre des tailles de réseaux de l’ordre du cerveau humain, j’expliquerai pourquoi les processus de Hawkes peuvent être un bon modèle pour passer à l’échelle. J’expliquerai comment les algorithmes classiques peuvent être renouvelés pour y arriver. Une des approches les plus innovantes est basée sur un résultat probabiliste fort : la décomposition de Kalikow, qui permet de tirer au hasard les dépendances spatiales et dans le passé et que nous avons redéfini en temps continu. Elle permet en particulier de simuler un neurone immergé dans un réseau infini sans avoir à simuler le réseau infini. Ce travail est effectué en collaboration avec Eva Löcherbach (mathématicienne, Paris I), Alexandre Muzy (informaticien, Université Côte d’Azur) ainsi que nos étudiants : Cyrille Mascart, Tien Cuong Phi et Paul Gresland.


Front du modèle FA1f en dimension 1

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 5 mai 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Aurelia Deshayes (Université Paris-Est Créteil) Résumé :

Dans cet exposé je présenterai un travail en collaboration avec Oriane Blondel et Cristina Toninelli où nous étudions le modèle FA1f en dimension 1. Il s’agit d’un système de particules en interaction (plus précisément un modèle issu de la physique statistique dit modèle cinétiquement contraint où chaque site met à jour la valeur de son spin si une certaine contrainte locale est satisfaite, ici c’est le fait d’avoir au moins un 0 dans ses voisins). Dans ce travail, nous prouvons, sous certaines conditions, une vitesse linéaire, et des fluctuations gaussiennes, pour le front (i.e. le 0 le plus à gauche lorsque l’on part d’une configuration initiale avec que des 1 à gauche de l’origine et un 0 en l’origine). Ce talk sera l’occasion de présenter les techniques classiques utilisées dans les modèles de croissance aléatoire tels que le processus de contact et de parler de méthode de couplage permettant de passer d’un modèle bien connu a un modèle plus complexe (en particulier non attractif).


TBA

Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 12 mai 2022 09:15-10:15 Lieu : Oratrice ou orateur : Florent Koechlin. Résumé :

Réductions d’arbres aléatoires d’expressions en présence d’un élément absorbant

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 12 mai 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Florent Koechlin (Loria) Résumé :

En informatique, les expressions aléatoires sont couramment utilisées pour analyser des algorithmes, que ce soit pour étudier leur complexité en moyenne, ou pour générer des benchmarks pour les tester expérimentalement. Généralement, ces approches considèrent les expressions en entrée comme des arbres purement syntaxiques, et font abstraction de leur sémantique, c’est-à-dire de l’objet mathématique représenté par l’expression.

Pourtant, deux expressions différentes peuvent être équivalentes (par exemple « 0*(x+y) » et « 0 » représentent la même expression, l’expression nulle). Ces phénomènes de redondances remettent-ils en question la pertinence de ces analyses et ces tests qui ne tiennent pas compte de la sémantique des expressions ?

Je présenterai comment la distribution uniforme sur les arbres syntaxiques d’expressions devient complètement dégénérée lorsqu’on commence à prendre en compte leur sémantique, dans le cas très simple mais courant où il existe un élément absorbant. Si le temps le permet, j’expliquerai pourquoi la distribution ABR laisse plus d’espoirs.

Il s’agit d’un travail effectué pendant ma thèse, en commun avec Cyril Nicaud et Pablo Rotondo.


Réunion d’équipe sur les enseignements

Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 19 mai 2022 09:15-10:15 Lieu : Oratrice ou orateur : Résumé :

Partitions aléatoires, cartes de grand genre et marche aléatoire sur les permutations

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 mai 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Guillaume Chapuy (Université de Paris) Résumé :

Je m’intéresserai à un modèle de partitions d’entiers aléatoires qui est une déformation à un paramètre de la très classique mesure de Plancherel du groupe symétrique. Cette déformation, qui a une définition combinatoire explicite, a sa source dans la théorie des nombres de Hurwitz, qui comptent certaines familles de cartes plongées sur des surfaces. La déformation que nous étudions intervient naturellement lorsque l’on s’intéresse à des nombres de Hurwitz (ou des cartes) de très grand genre, un problème qui se formule également dans le langage de la marche aléatoire sur le groupe des permutations engendré par les transpositions. Nous exhibons un phénomène de forme limite d’un type nouveau pour ces partitions, qui a des conséquences pour l’énumération des cartes et pour la marche. La démonstration utilise une méthode dite « entropique » qui mélange un peu de calcul des variations à beaucoup d’estimées combinatoires.
L’exposé sera introductif, sans pré-requis, avec de jolies images.
Travail en commun avec Baptiste Louf et Harriet Walsh.

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. ERC-2016-STG 716083 “CombiTop”).


Théorie des lieux et probabilités : Quand changer de vision sur la topologie résout plusieurs paradoxes de théorie de la mesure

Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 9 juin 2022 09:15-10:15 Lieu : Oratrice ou orateur : Rémi Peyre Résumé :

Nous l’avons tous appris en licence : il n’est pas possible d’étendre la mesure de Lebesgue à toutes les parties de [0, 1] d’une façon qui en conserve les propriétés satisfaisantes ! Il y a même pire : même en retirant la notion de « propriétés satisfaisantes », on ne peut construire aucune mesure de probabilité sur 𝔓([0, 1]) qui étende la mesure de Lebesgue (théorème d’Ulam) ; et sur 𝔓(ℝ3), il n’existe aucune extension finiment additive de la mesure de Lebesgue qui serait invariante par isométrie (paradoxe de Banach-Tarski)… D’autres points sont moins paradoxaux, mais presque aussi frustrants : pourquoi ne peut-on pas définir le support d’une mesure comme « la plus petite partie de mesure pleine » ? Pourquoi n’est-il pas possible de couper ℝ en deux parties parfaitement symétriques (comme on couperait une ficelle avec une lame) autrement qu’« à ensemble négligeable près » ?…

Il s’avère que tous ces problèmes disparaissent lorsque, au lieu de raisonner en termes de parties de ℝd, on raisonne plutôt en termes de lieux. Un « lieu » peut représenter une partie de ℝd quelconque, mais aussi des choses plus exotiques, comme par exemple le voisinage de l’infini ou le germe d’un cône ouvert : il s’agit simplement d’une autre façon d’appréhender la topologie, façon parfois qualifiée de « topologie sans points » : en effet, dans cette approche, il est possible de ne contenir aucun point sans être vide pour autant ! La théorie des lieux, développée initialement pour des raisons n’ayant rien à voir avec les questions de mesurabilité, se trouve néanmoins être parfaitement adaptée à celles-ci, et y résout nombre de paradoxes. Le point central est que la notion d’« être disjoints » au sens des lieux s’avère plus restrictive que la notion usuelle d’« ensembles disjoints » : or, toutes les constructions paradoxales de la théorie de la mesure reposent sur des ensembles dont la disjonction est “pathologique”, ce que la théorie des lieux permet de mettre en valeur !

Dans cet exposé, j’essaierai d’expliquer toutes ces choses, que j’ai découvertes récemment.


Le mouvement brownien itéré ad libitum n'est pas le pseudo-arc

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 9 juin 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérôme Casse (Université Paris-Saclay) Résumé :

À partir d’une suite de mouvements browniens bilatères indépendants, Kiss et Solecki ont construit un continuum (un espace métrique connexe, compact et non vide) aléatoire. Ils ont montré que ce continuum est indécomposable p.s. Avec Nicolas Curien, nous avons montré qu’il n’est pas héréditairement indécomposable p.s., et que ce n’est donc pas le pseudo-arc.

Dans cet exposé, j’expliquerai l’ensemble des termes précédents, la construction de ce continuum aléatoire et je vous expliquerai pourquoi il est indécomposable, mais pas héréditairement indécomposable.


Analyse probabiliste d'un algorithme d'apprentissage par renforcement pour trouver des plus courts chemins.

Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 16 juin 2022 09:15-10:15 Lieu : Oratrice ou orateur : Zoé Varin Résumé :

On considère un algorithme probabiliste suivi par des fourmis cherchant un plus court chemin entre leurs nids et une source de nourriture. À chaque étape une fourmi suit une marche aléatoire, dont les transitions dépendent des phéromones déposés par les fourmis précédentes, de son nid jusqu’à la source de nourriture. Nous verrons que le renforcement (i.e. le choix des arêtes sur lesquelles une fourmi dépose des phéromones) influe sur le comportement du processus, qui dans un certain nombre de cas converge : intuitivement, les fourmis coopèrent pour trouver des plus courts chemins. Je parlerai de différents résultats de convergence, en particulier pour une variante du modèle sur laquelle j’ai travaillé, dans laquelle le nid de départ est également aléatoire.


Sampling Rates for ℓ1-Synthesis

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 16 juin 2022 10:45-11:45 Lieu : Salle Döblin Oratrice ou orateur : Claire Boyer (Sorbonne Université) Résumé :

…ou « Combien de projections sous-gaussiennes doit-on faire pour reconstruire un objet parcimonieux dans un dictionnaire redondant ? »

This work investigates the problem of signal recovery from undersampled noisy sub-Gaussian measurements under the assumption of a synthesis-based sparsity model. Solving the l1-synthesis basis pursuit allows to simultaneously estimate a coefficient representation as well as the sought-for signal. However, due to linear dependencies within redundant dictionary atoms it might be impossible to identify a specific representation vector, although the actual signal is still successfully recovered. We study both estimation problems from a non-uniform, signal-dependent perspective. By utilizing results from linear inverse problems and convex geometry, we identify the sampling rate describing the phase transition of both formulations, and propose a « tight » estimated upper-bound.

This is a joint work with Maximilian März (TU Berlin), Jonas Kahn and Pierre Weiss (CNRS, Toulouse).


Approximation d'EDP dispersives en présence d'un aléa de faible régularité

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 6 octobre 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Yvain Bruned (Université de Lorraine) Résumé :

Dans cet exposé, on introduit une nouvelle classe de schémas numériques qui permettent des approximations de faible régularité du second moment de la solution d’une EDP dispersive avec des données initiales aléatoires. Cette quantité joue un rôle important en physique, en particulier dans l’étude de la turbulence des ondes où il faut adopter une approche statistique afin d’obtenir une compréhension approfondie du comportement générique à long terme des solutions aux équations dispersives. Nos schémas utilisent une discrétisation basée sur la résonance après avoir appliqué le théorème de Wick qui produit des diagrammes de Feynman. Pour écrire ces schémas, on introduit des forêts décorées appariées qui sont deux arbres décorés dont les décorations sur les feuilles viennent par paires. La construction du schéma s’inspire du traitement des équations aux dérivées partielles stochastiques singulières via les structures de régularité. Il s’agit d’un travail conjoint avec Yvonne Alama Bronsard et Katharina Schratz.


Primitives et dérivées fractionnaires : quelques résultats et applications

Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 13 octobre 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Renaud Marty (IECL) Résumé :

Les deux premiers esposés de l’année nous aurons le plaisir d’écouter Renaud sur Primitives et dérivées fractionnaires : quelques résultats et applications. Suit le résumé que Renaud nous a transmis.
Dans cet exposé nous donnons des définitions des primitives et dérivées fractionnaires.
Plusieurs résultats seront enoncées et démontrés, en particulier sur l’intégration par
parties et les équations différentielles fractionnaires.
Enfin nous présenterons quelques
applications en probabilités.


Marches aléatoires maximales entropiques (MAMEs) et limites d'échelles

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 13 octobre 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Yoann Offret (Université de Bourgogne) Résumé :

Les MAMEs sur des graphes sont les MAs qui maximisent l’entropie trajectoriellement. Leurs constructions nécessitent une connaissance globale du graphe dont le rayon spectral et vecteur propre positif associé. A contrario, les MA simples peuvent être vues comme celles maximisant l’entropie localement.

Ces MAs ont été introduites il y a une dizaine d’années par des physiciens et des informaticiens. Elles ont par exemple de meilleures propriétés diffusives dans les réseaux réguliers et de fortes propriétés de localisations dans les milieux irréguliers. Elles ont déjà trouvé de nombreuses applications dans le traitement d’images ou la prédiction de liens dans un graphe notamment.

Je présenterai quelques exemples, notamment des MAMEs sur des graphes infinis et des processus d’exclusions maximaux entropiques, et je parlerai de certaines limites d’échelles de ces processus (Bessel 3, Mouvement Brownien de Dyson…).


Primitives et dérivées fractionnaires : quelques résultats et applications - partie 2

Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 20 octobre 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Renaud Marty (IECL) Résumé :

Suite de la semaine précédente:
Dans cet exposé nous donnons des définitions des primitives et dérivées fractionnaires.
Plusieurs résultats seront enoncées et démontrés, en particulier sur l’intégration par parties et les équations différentielles fractionnaires.
Enfin nous présenterons quelques applications en probabilités.


A dynamical approach to spanning and surplus edges of random graphs

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 20 octobre 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Josué Corujo (Université de Strasbourg) Résumé :

During this talk, we will review some recent advances in the multiplicative coalescent theory and its link to random graphs. The multiplicative coalescent dynamic naturally emerges when one regards the evolution of the connected components in a graph-valued Markov process. We will mainly focus on the breadth-first walk introduced by V. Limic (2019), a Lévy-type process encoding a random forest whose components (trees) are a representation of the multiplicative coalescent. We will then focus on the extension of this construction to account for the surplus edges data, in addition to the spanning edge data. We will present two different graph representations of the multiplicative coalescent, with different advantages and drawbacks, that are discussed in detail. In particular, we will show how to recover a realization of the random graph at a fixed time, and also as a process when the time parameter evolves. We will also discuss the use of these results to understand the scaling limits of near-critical random graphs in the domain of attraction of general eternal multiplicative coalescent.


Autour de la stabilité de différents modèles d'appariements aléatoires

Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 10 novembre 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jocelyn Begeot (IECL) Résumé :

Les modèles d’appariements aléatoires représentent de nombreux systèmes stochastiques concrets dans lesquels des éléments de différentes classes sont appariés selon des règles de compatibilités spécifiées. Par exemple, on peut citer les systèmes dédiés à l’allocation d’organes, les sites de recherche d’emplois, de logements, etc. De tels modèles sont toujours associés à un triptyque d’éléments : un graphe connexe, dit de compatibilités, dont les sommets représentent les classes des éléments pouvant entrer dans le système et dont chaque arête relie deux classes compatibles, une politique d’appariements permettant de décider, en cas d’incertitude, quels appariements vont s’effectuer à l’intérieur du système, et un taux d’arrivées selon lequel les éléments entrent en son sein. Dans cet exposé, nous considérerons des graphes généralisés, c’est-à-dire que l’on autorisera l’appariement de deux éléments de la même classe, et nous étendrons donc à ce cadre certains résultats déjà connus dans le cas de graphes simples.

La stabilité d’un système régi par un modèle d’appariements est une propriété très importante. En effet, elle assure que les admissions au sein du système étudié sont contrôlées de sorte que les éléments ne restent pas bloqués à l’intérieur et que leur nombre n’augmente pas indéfiniment. Il est donc essentiel que le taux d’arrivées des éléments permette au système d’être stable. Dans cet exposé, nous caractériserons de manière algébrique cette zone de stabilité pour certains modèles d’appariements (généraux, généraux avec abandons, bipartis, bipartis étendus) ou de files d’attente, dites skill-based.

Par ailleurs, nous montrerons que la politique d’appariements dite First Come, First Matched (FCFM) possède la propriété d’être maximale (généralisée), c’est-à-dire que la zone de stabilité du modèle d’appariements général associé à un graphe de compatibilités et à une politique quelconque est toujours incluse dans celle associée à ce même graphe et à FCFM. Notons que cette dernière coïncide alors avec un ensemble de mesures défini par des conditions purement algébriques. Dans ce cas, la question de l’étude des mesures permettant la stabilité des systèmes régis par un modèle d’appariements revient donc à celle, plus élémentaire, de la caractérisation d’un ensemble déterministe. Nous donnerons alors un moyen de construction (simple) des mesures appartenant à celui-ci, ce qui peut s’avérer très utile pour calibrer le contrôle d’accès au système. En effet, la vérification algorithmique qu’une mesure quelconque vérifie ces conditions algébriques nécessite un nombre d’opérations polynomial en le nombre de sommets du graphe, et devient donc très coûteuse à mesure que ce cardinal augmente.

Nous expliciterons également, sous une forme produit, l’expression de la loi stationnaire de l’évolution temporelle du contenu d’un système stable régi par un modèle d’appariements général et sous la politique FCFM, permettant, notamment, de calculer explicitement des caractéristiques à l’équilibre de systèmes concrets et d’estimer leurs performances en temps long. On peut ainsi, par exemple, calculer la taille moyenne à l’équilibre d’une liste d’attente dans le cadre de dons croisés de reins, ou encore, estimer le temps moyen d’attente sur une interface pair-à-pair ou un site de rencontres.

Enfin, les taux d’appariements associés à un modèle d’appariements (général ou biparti étendu) stable seront étudiés. Ils sont définis comme étant les fréquences asymptotiques des appariements réalisés et fournissent un critère de performance des systèmes régis par de tels modèles d’appariements, de même que les propriétés de politique-insensibilité et d’équité de ces taux, qui seront également discutées.


Some asymptotic properties of inhibitive Hawkes process

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 10 novembre 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laetitia Colombani (Universität Bern) Résumé :

Hawkes process was introduced by Hawkes in 1971 and are widely used in many applications (earthquakes, neurons, social network, finance, etc.). This jump process has an intensity which depends on the past. Linear « self-exciting » Hawkes process has been particularly studied and some asymptotic results are well-known.
During my PhD, with Manon Costa and Patrick Cattiaux, I considered non-linear Hawkes processes, which can model self-inhibition and self-excitation. We proved asymptotic properties (law of large numbers, CLT, large deviations), by considering a new point of view for this process: the renewal structure of some Hawkes process leads to a comparison with cumulative processes.
In this talk, I’ll introduce Hawkes processes and cumulative processes. By exhibiting their link, I’ll give an idea of the approach we use to prove asymptotic properties.


Monitoring the risk of Legionella infection using general Bayesian network updated from temporal measurements in agricultural irrigation with reclaimed wastewater

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 17 novembre 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Gaspar Massiot (AgroParisTech Nancy) Résumé :

General Bayesian Networks (GBNs) extend Bayesian networks to the modeling of continuous links in the data.
I will demonstrate the implementation of the GBNs in the context of risk monitoring for Legionella infection from the use of reclaimed wastewater to irrigate agricultural plots.
I will also discuss the use of these networks to evaluate hypothetical scenarios of how failures of the system propagate in the model.


Introduction à : Théorèmes de turnpike en contrôle stochastique

Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 24 novembre 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Giovanni Conforti (CMAP, École Polytechnique) Résumé :

Ce groupe de travail est une introduction au séminaire de Probabilités et Statistique qui aura lieu juste après le groupe de travail.


Théorèmes de turnpike en contrôle stochastique

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 24 novembre 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Giovanni Conforti (École Polytechnique) Résumé :

Nous nous intéressons au comportement en temps long des processus de Markov obtenus comme solutions optimales de problèmes d’optimisation stochastique, comme par exemple des problèmes de contrôle stochastique ou des problèmes de transport optimal stochastique. Dans ce contexte, le générateur du processus n’est pas connu en forme explicite et depend de la solution d’une EDP non linéaire, typiquement une équation d’Hamilton-Jacobi-Bellman. Le but de cet exposé est d’expliquer comment on peut définir une notion de mesure invariante, qu’on appelle turnpike dans ce cadre, et d’illustrer les idées de base d’une technique par couplage qui permet d’obtenir des résultats de convergence exponentielle vers le turnpike. Dans un deuxième temps, la question der comment éteindre ces notions et résultats au contrôle McKean-Vlasov sera aussi abordée.


Nonparametric estimation of the Lévy density

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 1 décembre 2022 10:45-11:45 Lieu : Salle Döblin Oratrice ou orateur : Ester Mariucci (Université de Versailles) Résumé :

We consider the problem of estimating the Lévy density of a pure jump Lévy process, possibly of infinite variation, from the high frequency observation of one trajectory. To directly construct an estimator of the Lévy density, we use a compound Poisson approximation and we build a linear wavelet estimator. Its performance is studied in terms of $L_p$ loss functions, $p\geq1$, over Besov balls. To show that the resulting rates are minimax-optimal for a large class of Lévy processes, we propose new non-asymptotic bounds of the cumulative distribution function of Lévy processes with Lévy density bounded from above by the density of an alpha-stable type Lévy process in a neighbourhood of the origin. It is a joint work with Céline Duval.


Surfaces aléatoires et EDPS singulières

Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 8 décembre 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Tristan Robert (IECL) Résumé :

Dans cet exposé on s’intéressera à la construction de métriques Riemanniennes aléatoires sur les surfaces compactes, qui interviennent en théorie conforme des champs de Liouville. On étudiera la construction rigoureuse de la mesure de Liouville en suivant des travaux de Guillarmou-Kupiainen-Rhodes-Vargas, puis on s’intéressera à des EDPS préservant cette mesure.


Détection d'agrégats spatiaux : des statistiques de balayage pour données multivariées et fonctionnelles

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 8 décembre 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lionel Cucala (Université de Montpellier) Résumé :

Dans ce travail, nous nous intéressons à des observations associées à une localisation spatiale (généralement une position géographique) et nous cherchons à identifier des agrégats spatiaux, i.e. des zones où les observations ont un comportement atypique. Pour cela, nous utilisons des méthodes de balayage spatial.
Après avoir expliqué comment ces méthodes fonctionnent lorsque les observations sont réelles, nous introduisons des statistiques conçues spécifiquement pour le cas multivarié, puis pour le cas fonctionnel.
Ces méthodes sont appliquées sur des jeux de données environnementaux (concentration de métaux polluants) et socio-économiques (taux de chômage).


Non-asymptotic statistical test for the diffusion coefficient in stochastic differential equations

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 décembre 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anna Melnykova (Université d'Avignon) Résumé :

We develop a statistical test on the determinant of the diffusion coefficient in a 1 or 2-dimensional stochastic differential equations from discrete observations on a fixed time interval [0,T] sampled with a fixed time step.
We propose a test statistic based on increments of the process which guarantees the control of the level of the test in a non asymptotic setting. In dimension 1, the test density is known explicitly even when the drift is estimated. We construct the test and give conditions under which the Type I and Type II errors can be controlled. In dimension 2, the test statistic has not an explicit density but upper and lower bounds are provided. We then give conditions under which the Type I and Type II errors of the test procedure can be controlled. A numerical study illustrates the properties of the tests for stochastic processes with known or unknown drifts.