Exposés à venir
Les organisateurs des séminaires et journées des doctorants sont : Mabrouk Ben Jaba et Rodolphe Abou Assali
Markovian coupling for quantitative justification of model reduction
Catégorie d’évènement : Séminaire des doctorants Date/heure : 2 avril 2025 10:30-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mathilde Gaillard Résumé :A first simplification of the gene expression mechanism considers that a gene is transcribed into messenger RNA, which in turn is translated into protein. Single-cell data have revealed the presence of biological variability between cells of identical genome and environment, highlighting not only epigenetic aspects but also the stochastic nature of gene expression.
In the context of regulatory networks underlying cell states and types, we need to build a model that takes into account both stochasticity and the interaction of genes with each other. Here we focus on a dynamical model of gene expression, formulated as a piecewise-deterministic Markov process (PDMP) and describing an arbitrary number of interacting genes. This stochastic model is able to reproduce the biological variability measured experimentally, but remains mathematically complex and difficult to study. This is why, in the litterature, a simplified model with only proteins is considered.
During this talk, we provide insights on construction and use of semigroups and infinitesimal generators for PDMPs. Afterwards we present both models and use coupling methods to explicitly upper bound the error made when substituting the full model with its simplified version.
Séréna Pedon
Catégorie d’évènement : Séminaire des doctorants Date/heure : 30 avril 2025 10:45-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Séréna Pedon Résumé :TBA
Brieuc Frénais
Catégorie d’évènement : Séminaire des doctorants Date/heure : 7 mai 2025 10:45-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Brieuc Frénais Résumé :TBA
Louise Martineau
Catégorie d’évènement : Séminaire des doctorants Date/heure : 14 mai 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Louise Martineau (Université de Strasbourg) Résumé :TBA
Killian Lutz
Catégorie d’évènement : Séminaire des doctorants Date/heure : 17 septembre 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Killian Lutz (Université de Strasbourg) Résumé :TBA
Christopher Nicol
Catégorie d’évènement : Séminaire des doctorants Date/heure : 24 septembre 2025 10:45-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Christopher Nicol (Université de Strasbourg) Résumé :TBA
Archives
Les organisateurs des séminaires et journées des doctorants sont : Mabrouk Ben Jaba et Rodolphe Abou Assali
Markovian coupling for quantitative justification of model reduction
Catégorie d’évènement : Séminaire des doctorants Date/heure : 2 avril 2025 10:30-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mathilde Gaillard Résumé :A first simplification of the gene expression mechanism considers that a gene is transcribed into messenger RNA, which in turn is translated into protein. Single-cell data have revealed the presence of biological variability between cells of identical genome and environment, highlighting not only epigenetic aspects but also the stochastic nature of gene expression.
In the context of regulatory networks underlying cell states and types, we need to build a model that takes into account both stochasticity and the interaction of genes with each other. Here we focus on a dynamical model of gene expression, formulated as a piecewise-deterministic Markov process (PDMP) and describing an arbitrary number of interacting genes. This stochastic model is able to reproduce the biological variability measured experimentally, but remains mathematically complex and difficult to study. This is why, in the litterature, a simplified model with only proteins is considered.
During this talk, we provide insights on construction and use of semigroups and infinitesimal generators for PDMPs. Afterwards we present both models and use coupling methods to explicitly upper bound the error made when substituting the full model with its simplified version.
Séréna Pedon
Catégorie d’évènement : Séminaire des doctorants Date/heure : 30 avril 2025 10:45-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Séréna Pedon Résumé :TBA
Brieuc Frénais
Catégorie d’évènement : Séminaire des doctorants Date/heure : 7 mai 2025 10:45-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Brieuc Frénais Résumé :TBA
Louise Martineau
Catégorie d’évènement : Séminaire des doctorants Date/heure : 14 mai 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Louise Martineau (Université de Strasbourg) Résumé :TBA
Killian Lutz
Catégorie d’évènement : Séminaire des doctorants Date/heure : 17 septembre 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Killian Lutz (Université de Strasbourg) Résumé :TBA
Christopher Nicol
Catégorie d’évènement : Séminaire des doctorants Date/heure : 24 septembre 2025 10:45-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Christopher Nicol (Université de Strasbourg) Résumé :TBA
Archives
Séminaire doctorant.e.s
Catégorie d’évènement : Séminaire des doctorants Date/heure : 4 octobre 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nathan Gillot Résumé :Titre : Cartographie et Mathématiques : existe-t-il une carte parfaite ?
Abstract : Après une introduction historique de la modélisation de la Terre, nous allons nous intéresser à la possibilité de développer la sphère sur le plan. Formellement, est-il possible de trouver une application allant de la sphère dans le plan qui ait des bonnes propriétés ? Ensuite, nous étudierons les propriétés de conservation d’une carte qui serait isométrique, si une telle projection de la sphère existe. Enfin, nous aborderons la projection de Mercator, carte rendue célèbre pour son utilisation en navigation.
Journée de fin d'année des doctorants de Metz et amis
Catégorie d’évènement : Doctorants Date/heure : 12 juillet 2023 09:15-18:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Équipe des doctorants de Metz et bien plus Résumé :Pour clôturer l’année en beauté, journée de fin d’année des doctorants de l’IECL de Metz qui permettra de nous retrouver une dernière fois entre doctorants, nouveaux docteurs et amis !
Dans l’ordre alphabétique, les présentations seront de :
- Benjamin Alvarez (Centre de Physique Théorique, Université de Toulon) : << Une introduction à la théorie quantique des champs >> ;
- Nathan Couchet (Université Clermont Auvergne) : << Il était une fois le théorème de Rockland >>
Dans cet exposé nous allons présenter l’Histoire du théorème de Rockland datant de 1978.
Ce théorème fait un pont magistral entre la théorie des représentations de groupe et le caractère hypo-elliptique d’un opérateur différentiel homogène invariant à gauche par translation sur un groupe de Lie. Originalement démontré pour le groupe d’Heisenberg, Helffer et Nourrigat ont montré en 1979 que le théorème demeurait vrai pour les groupes de Lie gradués. En 2017, Dave et Haller ont énoncé la condition de Rockland filtrée, en lien étroit avec le calcul pseudodifférentiel groupoïdal de van Erp et Yuncken (2017).
Bien entendu, nous ferons les rappels nécessaires sur les algèbres de Lie graduées, la théorie des représentations de groupe et des opérateurs différentiels. Nous illustrerons la puissance de ce théorème au détour d’exemples historiques.
- Amine Hazzami (IECL-Probabilités) : << Et si un colonel ivre se mettait aux jeux stochastiques ? >> ;
- Ruben Louis (IECL-ATN) : << Structure de Poisson et résolution des équations de Hamilton par quadratures >>
Dans cet exposé je vais présenter l’application principale des structures de Poisson « théorie
des systèmes hamiltoniens intégrables ». Les systèmes intégrables apparaissent en mécanique classique comme systèmes mécaniques avec un nombre suffisant de constantes de mou-
vement, souvent provenant d’une symétrie (invariance par rotation, par translation,…), impliquant qu’une intégration explicite des equations de mouvement soit possible. Les structures de Poisson jouent un rôle très dans l’étude des systèmes intégrables.
- Aurélie Paull (IECL-ATN) : << Le groupe de Heisenberg associé à un corps fini: un groupe un peu spécial… >> ;
- Nathan Toumi (IECL-ATN) : << Normes de Gowers pour une généralisation de la suite de Thue-Morse >> ;
- Maxime Wagner (IECL-ATN) : << Tout ce que vous ne saviez pas sur le donut, à tore ou à raison >>.
Simulation d'expériences d'intervention biologique dans des cellules cancéreuses à partir de données temporelles d'expression de gènes
Catégorie d’évènement : Séminaire des doctorants Date/heure : 31 mai 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anouk Rago Résumé :En mathématiques comme en biologie, les interactions entre les gènes sont généralement représentées sous la forme d’un graphe orienté où les nœuds représentent les différents gènes et les arêtes une relation de dépendance entre deux gènes. Afin d’inférer ce réseau à partir de données dynamiques d’expression de gènes, de nombreuses techniques ont été développées ces dernières années. On peut citer par exemple l’utilisation de modèles graphiques gaussiens, de modèles linéaires avec inférence pénalisée ou encore des forêts aléatoires. À partir d’un graphe inféré grâce à un modèle et des données temporelles d’expression de gènes, nous nous intéressons à la modélisation d’une expérience biologique dite de silencing, consistant à réduire fortement l’expression de certains gènes dans la cellule, et à mesurer l’impact de ce silencing sur un ensemble de gènes appelés « cibles ». Ces expériences sont un espoir pour réduire la prolifération cellulaire incontrôlée qui survient dans les cellules leucémiques. En prenant en compte les spécificités de notre problème, notamment le faible nombre de données médicales et la structure du graphe inféré, nous proposons de développer et comparer deux méthodes différentes pour simuler mathématiquement ce silencing. Celles-ci seront testées numériquement sur des données temporelles simulées dans le cas d’un modèle linéaire standard.
L'ensemble de Mandelbrot, et un tour de magie.
Catégorie d’évènement : Séminaire des doctorants Date/heure : 3 mai 2023 10:45-11:45 Lieu : Salle Döblin Oratrice ou orateur : David Xu Résumé :Le mélange « à l’américaine » d’un jeu de cartes possède des propriétés mathématiques fortes qui peuvent être utilisées pour des tours de magie. De manière surprenante, les permutations de cartes obtenues à l’aide d’un tel mélange sont étroitement liées à un objet central en dynamique holomorphe : l’ensemble de Mandelbrot.
Continuité d'une EDP par rapport au domaine
Catégorie d’évènement : Séminaire des doctorants Date/heure : 12 avril 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Rémy Mougenot Résumé :Une équation aux dérivées partielles est la donnée d’un opérateur, d’un second membre et d’un ouvert de l’espace. Comment se comportent les solutions de cette équation lorsque l’ouvert est légèrement perturbé ? À travers différentes illustrations, nous étudierons les différentes topologies possibles sur les domaines : convergence au sens de Hausdorff, des compacts, etc. Avant cela, nous rappellerons les différentes notions utilisées pour étudier les EDP variationnelles. Ensuite, nous chercherons les bonnes conditions sur les ouverts pour assurer la convergence des solutions ; lorsque l’opérateur est le Laplacien, on parle de
Géométrie de Poisson : théorie, exemples et applications en analyse numérique
Catégorie d’évènement : Séminaire des doctorants Date/heure : 22 mars 2023 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Oscar Cosserat (La Rochelle) Résumé :La dynamique hamiltonienne en géométrie de Poisson permet, via la géométrie différentielle, une description efficace et puissante des symétries de nombreuses équations de la mécanique conservative. J’expliquerai les grandes lignes de la théorie et l’illustrerai par des exemples. Enfin, je raconterai comment elle est mise à profit dans la conception de méthodes numériques résolvant lesdites équations en possédant des propriétés qualitatives remarquables, comme la préservation de symétries ou la stabilité au voisinage d’une singularité. J’illustrerai ces méthodes par des simulations numériques.
L’exposé repose en partie sur le preprint « Symplectic groupoids for Poisson integrators », 0.C., 2022 (arXiv : 2205.04838).
Multimodal Perception and Statistical Modeling of Pedagogical Classroom Events Using a Privacy-safe Non-individual Approach
Catégorie d’évènement : Séminaire des doctorants Date/heure : 22 février 2023 10:45-12:00 Lieu : Oratrice ou orateur : Anderson Augusma Résumé :Ecritures en bases et nombres de Pisot
Catégorie d’évènement : Séminaire des doctorants
Date/heure : 18 janvier 2023 10:45-11:45
Lieu : Salle de conférences Nancy
Oratrice ou orateur : Renan Laureti
Résumé : La méthode usuelle que nous utilisons pour écrire les nombres réels est le développement en base entière, qui consiste à exprimer un nombre réel
Nous verrons dans cet exposé les différences de fonctionnement des bases
Autour de l'équation du plus bas niveau de Landau
Catégorie d’évènement : Séminaire des doctorants Date/heure : 7 décembre 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Valentin Schwinte Résumé :Dans cet exposé, nous discuterons autour de l’équation du plus bas niveau de Landau, qui apparaît dans de nombreuses situations de la mécanique quantique, telles que la supraconductivité ou les condensats de Bose-Einstein. Nous commencerons par l’étude des propriétés basiques de l’équation : symétries, quantités conservées, existence et unicité d’une solution. Dans le but de mieux comprendre cette équation, nous regarderons de plus près une classe de solutions particulières appelées ‘ondes stationnaires’. Si le temps nous le permet, nous étudierons une conjecture concernant le réseau d’Abrikosov.
"Ô mon beau laplacien !"
Catégorie d’évènement : Doctorants Date/heure : 30 novembre 2022 10:30-12:00 Lieu : Oratrice ou orateur : Nathan Couchet Résumé :Au travers de deux grands problèmes de la Physique et plus généralement de l’Histoire des mathématiques, cet exposé vise à motiver l’étude des opérateurs différentiels. Nous discuterons dans un premier temps de géométrie spectrale en dimension 1 et 2. Il existe en effet un lien entre le nombre de valeurs propres du laplacien et la géométrie du domaine associée à l’équation acoustique d’Helmholtz.
Dans un second temps, nous explorerons la naissance du concept de solution fondamentale d’un opérateur différentiel. Celui-ci suggère deux notions aujourd’hui fondamentales : l’ellipticité et l’hypo-ellipticité.
Enfin, si le temps nous est favorable, nous parlerons du théorème original de Rockland de 1978, lequel dresse un parallèle entre hypo-ellipticité et théories des représentations du groupe d’Heisenberg.