Doctorants

Les organisateurs des séminaires et journées des doctorants sont : Nathan Gillot et Amine Hazzami.

Exposés à venir

Archives

Étude de la stabilité du cœur d'un jeu coalitionnel

Catégorie d'évènement : Séminaire des doctorants Date/heure : 21 octobre 2020 14:00-15:00 Lieu : Oratrice ou orateur : Dylan Laplace Mermoud Résumé :

La théorie des jeux coalitionnels est la partie de la théorie des jeux qui s’intéresse à la formation de coalitions. Son but est de proposer des concepts de solutions qui satisfont plusieurs propriétés : anonymat, symétrie, efficacité entre autres. En 1944, von Neumann et Morgenstern propose le concept des « ensembles stables », définis comme l’ensemble des solutions desquelles nous n’allons pas dévier. En 1959, Gillies propose le concept de « cœur », défini comme l’ensemble des solutions qui donnent à chacun au moins ce qu’il mérite, en fonction des rapports de forces qui s’appliquent au sein du jeu. Chacun de ces concepts a ses inconvénients : les ensembles stables ne sont pas uniques et sont très difficiles à calculer, le cœur quant à lui ne propose pas un ensemble de solutions stables. L’idéal serait d’avoir un cœur stable: dans ce cas il serait unique, facile à calculer et chaque solution satisferait tous les joueurs qui ne vont pas dévier de celle-ci. Cependant, savoir si un jeu admet un cœur stable ou non est un problème très complexe.


Mesures de complexités pour suites pseudo-aléatoires

Catégorie d'évènement : Séminaire des doctorants Date/heure : 7 octobre 2020 14:00-15:00 Lieu : Oratrice ou orateur : Pierre Popoli Résumé :

Il existe plusieurs mesures de complexité pour les suites qui établissent des critères pour évaluer si une suite peut être considérée comme pseudo-aléatoire. Nous verrons que les suites automatiques, déterminées par un automate fini déterministe, comme la suite de Thue-Morse, ne rentrent pas dans cette catégorie car leur complexité en sous-mots fait défaut. Cependant, de récents résultats montrent que cette même suite, raréfiée le long des carrés, semble être un meilleur candidat pour être une suite pseudo-aléatoire. Dans cet exposé je parlerai de la généralisation de la borne inférieure de la complexité d’ordre maximal à toute une famille de suites automatiques, comprenant la suite de Rudin-Shapiro par exemple, le long de sous-suites polynomiales. Je terminerai en évoquant la représentation de Zeckendorf et de sa fonction somme des décimales qui rentre dans un cadre plus général que les suites automatiques.


Opérateurs elliptiques, régularité et indice

Catégorie d'évènement : Séminaire des doctorants Date/heure : 16 juin 2020 14:00-15:00 Lieu : Oratrice ou orateur : Rémi Côme Résumé :

Le Laplacien sur ℝⁿ possède une propriété très forte de régularité a priori : si Δu est infiniment dérivable, alors u l’est également. Cette propriété est caractéristique des opérateurs dits « elliptiques », dont l’introduction sera l’objet de mon exposé. Sur les variétés compactes en particulier, l’étude de ces opérateurs a culminé dans la seconde moitié du XXè siècle avec le théorème de l’indice d’Atiyah et Singer, dont j’essaierai d’expliquer la portée. Je terminerai en montrant que ces deux propriétés ne tiennent plus, ou alors différemment, sur des espaces singuliers ou non compacts.


Introduction aux groupoïdes

Catégorie d'évènement : Séminaire des doctorants Date/heure : 9 juin 2020 14:00-15:00 Lieu : Oratrice ou orateur : Fabien Bessière Résumé :

Les groupoïdes généralisent de nombreuses notions mathématiques : groupes, espaces topologiques, relations d’équivalences, action de groupes. On peut associer à tout groupoïde, une C*-aglèbre qui « encode » la structure de groupoïdes. Les groupoïdes agissent sur des objets fibrés. Par analogie des actions de groupes sur une C*-algèbre, les groupoïdes vont agir sur des C_{0}(X)-algèbres : ce sont des fibrés de C*-algèbres. Je présenterai les propriétés généralent des groupoïdes, la construction de la C*-algèbre d’un groupoïde et enfin rapidement la notion de C_0(X)-algèbres.


L’analyse harmonique : une généralisation de Fourier

Catégorie d'évènement : Séminaire des doctorants Date/heure : 2 juin 2020 14:00-15:00 Lieu : Oratrice ou orateur : Simon Roby Résumé :

L’analyse harmonique vise à décomposer les phénomènes (souvent des fonctions) en constituantes plus simple à analyser, appelées « signaux ». Après avoir analysé ces constituantes, on recompose la fonction d’origine en essayant de conserver certaines propriétés. C’est donc l’approfondissement et la généralisation des concepts de série et transformée de Fourier. Elle a été largement appliquée en physique (elle vient en fait du questionnement des physiciens comme souvent au XXème siècle) : traitement des signaux, mécanique quantique, neurosciences. Nous verrons dans cet exposé comment généraliser ce concept aux groupes de Lie (appelé analyse harmonique sur les groupes de Lie) et quels sont les résultats connus aujourd’hui. Le lien avec les représentations des groupes sera aussi abordé.


(C^*)-algèbre d’un groupoïde

Catégorie d'évènement : Séminaire des doctorants Date/heure : 11 mars 2020 14:00-15:00 Lieu : Oratrice ou orateur : Fabien Bessière Résumé :

Les groupoïdes généralisent de nombreuses notions mathématiques : groupes, espaces topologiques, relations d’équivalences, action de groupes. On peut associer à tout groupoïdes, une (C^*)-algèbre qui « encode » la structure de groupoïdes. Les groupoïdes agissent sur des objets fibrés. Par analogie des actions de groupes sur une (C^*)-algèbre, les groupoïdes vont agir sur des (C_0(X))-algèbres : ce sont des fibrés de (C^*)-algèbres. Je présenterai les propriétés générales des groupoïdes, la construction de la (C^*)-algèbre d’un groupoïde et enfin rapidement la notion de (C_0(X))-algèbres.


Lie infinie algebroides et feuilletages singuliers

Catégorie d'évènement : Séminaire des doctorants Date/heure : 4 mars 2020 14:00-15:00 Lieu : Oratrice ou orateur : Ruben Louis Résumé :

Le but de cet exposé est d’introduire la notion de L-infty algebroides et faire le lien avec les feuilletage singuliers. Je commencerai par rappeler la définition de L-infty algèbres (vu comme une généralisation des algèbres de Lie) et illustrer quelques exemples. Ensuite j’introduirai la définition de Lie infinie algebroides et présenter quelques resutats reliant les Lie infinie algebroides et les feuilletage singuliers.

Toute Lie infinie algebroides induit un feuilletage singuliers F (l’image de l’ancre). Une question naturelle est se demander si tout feuilletages singuliers provient d’une Lie infinie algébroide (lorsqu’elle existe on l’appelle « Lie infinie algébroide universelle de F »). Cette question en partie reste ouverte en revanche on connaît des cas où c’est toujours possible: dans le cas lisse, l’existence d’une résolution géométrique du feuilletage singulier est suffisant; dans le cas (localement ) analytique ou holomorphe elle existe toujours dans un voisinage de tout point de la variété. Cette Lie infinie algébroide lorsqu’elle existe elle est unique à homotopie près, ce qui justifie le nom « Lie infinie algébroide universelle ».


Méthodes de décomposition de domaine pour la simulation acoustique industrielle

Catégorie d'évènement : Séminaire des doctorants Date/heure : 3 mars 2020 14:00-15:00 Lieu : Oratrice ou orateur : Philippe Marchner Résumé :

Dans le cadre de ma thèse, je m’intéresse à la simulation haute-fréquence de problèmes ondulatoires harmoniques en milieu non-homogène, qui posent d’importantes difficultés tant au niveau numérique que mathématique. D’un point de vue physique, ces problèmes décrivent la propagation d’ondes acoustiques en écoulement, aussi appelée aéroacoustique.

L’objectif principal est de développer une méthode de calcul parallèle efficace, dite de décomposition de domaine. Le principe est de partitionner le domaine de calcul en sous-domaines, puis d’itérer sur un problème défini aux interfaces qui connecte ces sous-domaines. La convergence de cette méthode dépend fortement de conditions de transmission définies aux interfaces.

Après vous avoir présenté le cadre de l’étude, je vous parlerai des outils mathématiques utilisés pour la construction de conditions de transmission appropriées. Ces outils sont issus de l’analyse microlocale et sont appliqués à l’opérateur Dirichlet-To-Neumann. Ensuite, je vous montrerai une application de la méthode pour un problème industriel 3D: le rayonnement acoustique d’un turboréacteur d’avion.


Introduction à la théorie du scattering unitaire

Catégorie d'évènement : Séminaire des doctorants Date/heure : 28 janvier 2020 14:00-15:00 Lieu : Oratrice ou orateur : Nicolas Frantz Résumé :

A un système quantique, on associe un espace de Hilbert. L’équation de Schrödinger sur cet espace permet d’étudier l’évolution des états de ce système dans le temps. Dans le cas où l’opérateur de Schrödinger est auto-adjoint, la solution de l’équation est donnée par un groupe unitaire. Les états asymptotiquement libres (c’est-à-dire se comportant en temps infini comme s’il n’y avait aucune interaction) correspondent au sous espace spectral absolument continu associé à l’opérateur de Schrödinger. Physiquement, on souhaite que l’image d’un état asymptotiquement libre par le groupe reste asymptotiquement libre. C’est ce qu’on appelle la complétude asymptotique.

Dans un premier temps je décrirai les axiomes qui permettent de décrire un système quantique. J’expliquerai ensuite quelque point de théorie spectrale ce qui nous permettra de définir les opérateurs d’ondes et de donner une définition mathématique de complétude asymptotique.


Introduction aux feuilletages

Catégorie d'évènement : Séminaire des doctorants Date/heure : 21 janvier 2020 14:00-15:00 Lieu : Oratrice ou orateur : Kévin Massard Résumé :

Intuitivement, un feuilletage est une partition d’une variété (M) en sous-variétés connexes de même dimension, appelées feuilles. On peut s’intéresser à l’espace des feuilles, défini comme le quotient de (M) par la relation d’équivalence (mathcal{R}) qui identifie deux points de (M) s’ils sont une une même feuille. Cependant, cet espace peut être très singulier. On construit alors le groupoïde d’holonomie, groupoïde de Lie qui contient (mathcal{R}). Nous illustrerons ces notions avec quelques exemples simples.


1 2 3 4 5 6 7 8 9 10 11 12