Séminaire de Géométrie complexe

Exposés à venir

Abonnement iCal

Archives

Phénomènes de positivité dans les algèbres de Hecke associées aux groupes de Coxeter arbitraires

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 27 juin 2016 15:30-16:30 Lieu : Oratrice ou orateur : Thomas Gobet Résumé :

Les algèbres de Hecke associées aux groupes de Weyl finis ou
affines sont centrales en théorie des représentations, en géométrie et en
topologie de petite dimension notamment. En 1979, motivés par des
questions reliées aux singularités des variétés de Schubert, Kazhdan et
Lusztig ont introduit deux bases (dites canoniques) de ces algèbres. Ils
en ont donné une définition purement combinatoire, qui se généralise aux
algèbres de Hecke associées aux groupes de Coxeter arbitraires. Ils ont en
outre formulé une conjecture de positivité: la matrice de changement de
base entre l’une des bases canoniques et la base dite standard de
l’algèbre de Hecke ne devrait avoir pour coefficients que des polynômes à 
coefficients positifs. Si cette conjecture a été rapidement démontrée par
Kazhdan et Lusztig (1980) dans le cas des groupes de Weyl en utilisant des
techniques géométriques, l’absence de telles techniques dans le cas
général a longtemps constitué un obstacle à  une approche générale,
jusqu’aux travaux de Soergel (2007): Soergel a proposé un remplacement à 
la géométrie (a priori) inexistante dans le cas général, ce qui a permis
une preuve récente de la conjecture de positivité en toute généralité par
Elias et Williamson (2014).

Après quelques rappels sur les groupes de Coxeter, leurs algèbres de Hecke
et les groupes d’Artin-Tits associés, nous tenterons d’expliquer l’idée de
la construction de Soergel, qui repose sur une technique de
catégorification, sans entrer dans les détails techniques. Nous
expliquerons comment cette approche peut également être utilisée pour
résoudre certaines généralisations de la conjecture de positivité énoncées
par Dyer, et reliées à  des problèmes touchant aux groupes d’Artin-Tits.


Un critère de quadraticité local pour la variété des représentations du groupe fondamental d'une variété algébrique lisse

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 6 juin 2016 15:30-16:30 Lieu : Oratrice ou orateur : Louis-Clément Lefèvre Résumé :

Nous nous intéressons aux groupes fondamentaux des variétés algébriques lisses complexes quasi-projectives, que nous étudions à  travers leurs représentations dans un groupe algébrique linéaire et les déformations de ces représentations.

Dans le cas d’une variété kählérienne compacte, la théorie de Goldman-Millson (1988) décrit précisément les obstructions aux déformations d’une représentation donnée, inspirée par les travaux sur le type d’homotopie réelle et la théorie de Hodge des variétés kählériennes compactes. Les seules obstructions sont d’ordre 2.

Pour une variété algébrique non compacte, la théorie est étendue par Kapovich-Millson (1998) à  l’aide de structures de Hodge mixtes. Nous montrons comment dans certains cas la théorie se réduit encore à  des seules obstructions d’ordre 2 et nous donnons des exemples o๠se phénomène se produit.

Travail prépublié arXiv:1509.02871


Formes différentielles logarithmiques et résidus

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 23 mai 2016 15:30-16:30 Lieu : Oratrice ou orateur : Delphine Pol Résumé :

Dans son papier fondamental, K. Saito développe la notion de formes différentielles logarithmiques et de résidus le long d’un diviseur réduit singulier. M. Granger et M. Schulze montre que lorsque le module des résidus logarithmiques est minimal, le diviseur est à  croisements normaux en codimension 1. Plus récemment, A.G. Aleksandrov et A. Tsikh ont généralisé certaines de ces notions au cas des intersections complètes. Dans cet exposé, je commencerai par introduire le module des formes différentielles logarithmiques et leurs résidus le long d’un diviseur ou d’une intersection complète. On s’intéressera ensuite au cas des courbes, pour lesquelles on relie les valuations du module des résidus aux valuations de l’idéal jacobien et des différentielles de Kähler.


Solitons de Kähler-Ricci sur les compactifications de groupes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 avril 2016 15:30-16:00 Lieu : Oratrice ou orateur : Thibaut Delcroix Résumé :

Je présenterai une condition nécessaire et suffisante d’existence
de solitons de Kähler-Ricci sur les compactifications de groupes, des
variétés qui généralisent les variétés toriques. La condition s’exprime
en terme d’un barycentre du polytope moment associé à  la variété et peut
se vérifier explicitement. Je discuterai ensuite l’interprétation de cette
condition en terme de K-stabilité, et mon travail en cours pour étendre
ces résultats aux variétés sphériques.


Géométrie birationnelle sur certaines variétés algébriques munies de l'action d'un groupe algébrique réductif

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 avril 2016 14:00-16:30 Lieu : Oratrice ou orateur : Boris Pasquier Résumé :

Après une introduction intuitive de la géométrie birationnelle, j’expliquerai comment celle-ci peut devenir plus simple sur des variétés munies de l’action d’un groupe réductif. Je définirai ensuite les grandes lignes du programme des modèles minimaux, et je détaillerai comment décrire et faire tourner ce programme dans le cadre de familles « bien choisies » de variétés munies de l’action d’un groupe réductif, à  l’aide des représentations du groupe.


Sous-groupes algébriques connexes maximaux du groupe de Cremona

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 18 avril 2016 15:30-16:30 Lieu : Oratrice ou orateur : Ronan Terpereau Résumé :

Cet exposé est à  propos d’un travail en cours avec Jérémy Blanc (Bâle) et Andrea Fanelli (Bâle). Le groupe de Cremona est le groupe des transformations birationnelles de l’espace projectif complexe de dimension n. Ce groupe n’est pas algébrique dès lors que n>1, mais on peut espérer (au moins lorsque n est petit) classifier ses sous-groupes connexes algébriques maximaux.

En dimension 2, la classification est ancienne et bien connue (F. Enriques, 1893). En dimension 3, la première étude rigoureuse fà»t effectuée par H. Umemura dans les années 1980 dans une série de cinq papiers (plutôt longs et techniques).

Dans cet exposé, j’expliquerai comment on peut espérer redémontrer les résultats d’Umemura d’une façon beaucoup plus simple et géométrique à  l’aide (d’un usage élémentaire) de la théorie de Mori. Je terminerai en discutant plusieurs généralisations possibles des résultats d’Umemura via cette nouvelle approche.


Positivité et dualité sur les variétés complexes compactes lisses

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 14 mars 2016 15:30-16:00 Lieu : Oratrice ou orateur : Dan Popovici Résumé :

Nous présenterons notre solution à  la partie qualitative et notre solution partielle à  la partie quantitative de la conjecture de Demailly des inégalités de Morse transcendantes pour une différence de deux classes nef sur une variété kählérienne compacte. En plus d’estimations des solutions de certaines équations de Monge-Ampère, la méthode utilise la dualité entre la cohomologie de Bott-Chern et celle d’Aeppli de bidegré complémentaire, ainsi que la dualité entre le cône pseudoeffectif des classes de Bott-Chern de $(1, 1)$-courants positifs fermés introduit par Demailly et le cône de Gauduchon des classes d’Aeppli de bidegré $(n-1, n-1)$ de métriques de Gauduchon que nous avons introduit.


Caractérisation numérique des quadriques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 7 mars 2016 15:30-16:00 Lieu : Oratrice ou orateur : Thomas Dedieu Résumé :

Je présenterai le résultat suivant obtenu en collaboration avec
Andreas Höring : soit $X$ une variété de Fano, lisse et telle que
$-K_X cdot C geq dim X$ pour toute courbe rationnelle $C subset
X$. Alors $X$ est un espace projectif ou une hypersurface
quadrique.


Plongement de variétés presque complexes compactes dans une variété algébrique complexe

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 29 février 2016 15:30-16:00 Lieu : Oratrice ou orateur : Hervé Gaussier Résumé :

Dans ce travail en commun avec Jean-Pierre Demailly, nous montrons que toute variété presque complexe compacte lisse peut être plongée dans une variété algébrique complexe, transversalement à  une distribution algébrique.


Croissances et suites de degrés

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 22 février 2016 15:30-16:00 Lieu : Oratrice ou orateur : Julie Déserti Résumé :

Dans cet exposé je m’intéresserai aux croissances et suites de degrés des automorphismes polynomiaux de $mathbb{C}^n$ et des transformations birationnelles de $mathbb{P}^n_{mathbb{C}}$.


19 20 21 22 23 24 25 26 27 28 29