Séminaire de Géométrie complexe

Exposés à venir

Abonnement iCal

Archives

Densités des courants positifs fermés et distribution des points périodiques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 9 février 2015 14:00-15:00 Lieu : Oratrice ou orateur : Nessim Sibony Résumé :

La théorie des densités des courants positifs fermés est une extension
de la notion de multiplicité pour les variétés, ou de nombre de Lelong pour les courants.
Les densités sont des classes de cohomologie associées aux courants tangents, à  un courant donné,
le long d’une sous variété complexe.Ces classes vivent dans le fibré normal à  la sous variété et décrivent les propriétés tangentielles du courant.
La notion est utile pour développer une théorie des intersections non-génériques.Comme application on obtient le Théorème suivant.
Soit f un automorphisme polynomial régulier de C^k. Les points périodiques de type selle
s’equidistribuent selon la mesure d’équilibre de f.
Il s’agit d’un travail en collaboration avec T.C Dinh.


Some examples due to H. Hironaka

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 19 janvier 2015 14:00-15:00 Lieu : Oratrice ou orateur : Daniel Barlet Résumé :

The aim of this paper is to give some comments on the construction by H. Hironaka [H.61] of a holomorphic (in fact algebraic) family of compact complex manifolds parametrized by $mathbb C$ such for all $u in mathbb C setminus {0}$ the fiber is projective, but such that the fiber at the origin is non kählerian. We also explain why it is not possible to make in the same way such a family with fiber at $0$ a simpler example of non kählerian Moishezon manifold which is also due to H. Hironaka.

This paper does not give a complete proof of Hironaka’s construction. It only tries to give some help for the reader of this famous article and tries to explain some points which are not explicit although they are well known to specialists.


Géographie des surfaces simplement connexes et arrangements de cubiques planes lisses

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 15 décembre 2014 13:45-15:00 Lieu : Oratrice ou orateur : Xavier Roulleau Résumé :

Les nombres de Chern $c_1^2,c_2inmathbb{Z}$ d’une surface complexe lisse minimale $X$ vérifient l’inégalité de Bogomolov-Miyaoka-Yau $c_1^2leq 3c_2$.
Une surface satisfaisant l’égalité $c_1^2=3c_2$ n’est jamais simplement connexe et Bogomolov demandait à  la fin des années 70 si on peut améliorer l’inégalité de Bogomolov-Miyaoka-Yau en $c_1^2leq ac_2$ avec $a<3$, si on suppose que $X$ est de plus simplement connexe.
Dans cet exposé, on montre qu'il existe des surfaces spin (resp. non-spin) simplement connexes avec $c_1^2/c_2$ arbitrairement proche de 3, et donc que la réponse est négative. La construction se fait à  l’aide de revêtements cycliques du plan ramifiés au-dessus de certains arrangements de cubiques planes lisses, et est un écho des constructions de Hirzebruch de surfaces vérifiant l’égalité $c_1^2=3c_2$ obtenues à  l’aide d’arrangements de droites.

Travail en collaboration avec G. Urzua.


Sur la stabilité des fibrés homogènes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 8 décembre 2014 14:00-15:00 Lieu : Oratrice ou orateur : Pierre-Emmanuel Chaput Résumé :

Sur un espace homogène, tout fibré équivariant irréductible est stable au sens de Mumford. J’esquisserai une preuve de ce résultat due à  Biswas. Par ailleurs, par des résultats de Mehta-Ramanathan ou Flenner, la restriction d’un fibré stable à  une intersection complète générique de grand degré reste stable.
Une question naturelle se pose alors : étant donné un fibré homogène irréductible, sur quelles intersections complètes le fibré devient-il instable, s’il y en a ?
Je présenterai plusieurs résultats montrant que, dans le cas du fibré cotangent sur un espace homogène minuscule (par exemple une Grassmannienne), de telles intersections complètes sont très rares. Leurs démonstrations reposeront sur un théorème d’annulation original concernant la cohomologie de Dolbeault des fibrés en droites sur ces espaces homogènes.


Journée groupe de travail : cohomologie d'intersection

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 2 décembre 2014 10:30-18:00 Lieu : Oratrice ou orateur : Johannes Nagel (IMB), Benoît Claudon, Damien Mégy Résumé :

Groupes fondamentaux épointés des singularités klt (d'après C. Xu)

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 17 novembre 2014 14:00-15:00 Lieu : Oratrice ou orateur : Benoît Claudon Résumé :

Dans cet exposé j’essayerai d’expliquer les résultats de C. Xu sur les groupes fondamentaux épointés de germes de singularité klt (c’est à  dire le groupe fondamental d’un voisinage analytique assez petit privé du point singulier considéré). La démonstration repose en grande partie sur des résultats récents du MMP.


Sur la géométrie d'une surface de caractéristique d'Euler 3 revêtue par la boule

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 20 octobre 2014 14:00-15:00 Lieu : Oratrice ou orateur : Vincent Koziarz Résumé :

Au cours de leur classification des faux plans projectifs, Cartwright et Steger ont découvert de façon assez surprenante une surface de caractéristique d’Euler 3 dont le revêtement universel est la boule, et qui fibre sur une courbe elliptique. Le but de cet exposé sera de décrire de façon aussi précise que possible la géométrie de cette surface. Il s’agit d’un travail en commun avec D. Cartwright et S.-K. Yeung.


Travaux de Maryam Mirzakhani sur la métrique de Weil-Petersson

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 13 octobre 2014 14:00-15:00 Lieu : Oratrice ou orateur : Damien Mégy Résumé :

Ceci est un exposé de groupe de travail. J’essaierai d’expliquer certains travaux de Maryam Mirzakhani sur les volumes d’espaces de modules, un peu plus en détail qu’à  la journée d’accueil de l’IECL.


A Characterization of finite quotients of Abelian varieties

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 15 septembre 2014 14:00-15:00 Lieu : Oratrice ou orateur : Behrouz Taji Résumé :

A classical uniformization result of Yau shows that any compact Kähler manifold with vanishing
Chern classes is, up to a cover, an Abelian variety. After generalizing this result to the context
of Kawamata log-terminal (or klt, for short) varieties, we prove a complete characterization of quotients
of Abelian varieties (by finite groups acting freely in codimension-one) via vanishing of (orbifold) Chern classes.
The main ingredient of the proof consists of tracing a correspondence (up to a suitable cover) between
semistable reflexive sheaves over klt spaces with vanishing orbifold Chern classes and locally-free sheaves whose
associated bundle is flat.
This is a joint work with Steven Lu.


Applications holomorphes entre quotients de la boule

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 23 juin 2014 14:00-16:30 Lieu : Oratrice ou orateur : Pierre Py Résumé :

Un quotient de la boule est une variété complexe compacte ou de volume fini dont le revêtement universel est isomorphe à  la boule unité de $mathbb C^N$. Il est en général difficile de construire des exemples d’applications holomorphes surjectives entre de telles variétés, mis à  part les revêtements finis. Quelques exemples ont été construits et étudiés par Mostow, Toledo et Deraux. Dans cet exposé j’expliquerai comment construire quelques nouveaux exemples. Cela repose sur les travaux de Couwenberg, Heckman and Looijenga.


22 23 24 25 26 27 28 29