Exposés à venir
Archives
Groupes des automorphismes des $\mathbb{P}^1$-fibrés sur les surfaces réglées
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 19 février 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pascal Fong Résumé :La classification des sous-groupes algébriques des groupes des transformations birationnelles a été initiée par l’Ecole Italienne de la géométrie algébrique. Enriques et Fano énoncent la liste des sous-groupes algébriques connexes maximaux de $\mathrm{Bir}(\mathbb{P}^3)$ sur le corps des nombres complexes. En utilisant des méthodes analytiques, Umemura fournit une preuve de leur classification. Plus récemment, par des techniques purement algébriques, Blanc, Fanelli, Terpereau reconstituent et généralisent la quasi-intégralité de cette preuve. Dans cet exposé, on classifie les couples $(X,\mathrm{Aut}^\circ(X))$ tels que $X$ est un espace fibré en $\mathbb{P}^1$ sur une surface réglée non rationnelle S et $\mathrm{Aut}^\circ(X)$ est un sous-groupe algébrique connexe maximal dans $\mathrm{Bir}(X/S)$.
Fibrés de Fock et composantes de Hitchin
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 12 février 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alexander Thomas Résumé :L’étude des représentations d’un groupe fondamental d’une surface dans un groupe de Lie est décrite par la variété des caractères. Je présente une nouvelle approche, les fibrés de Fock, pour étudier les variétés des caractères. Malgré des similarités avec la théorie de Hodge nonabelienne, la différence cruciale est qu’aucune structure complexe est fixée sur la surface. Les fibrés de Fock sont étroitement liés aux structures complexes supérieures et mènent à un lien avec la composante de Hitchin. Travail en commun avec Georgios Kydonakis et Charlie Reid.
Sur la structure locale des champs analytiques.
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 29 janvier 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Doan An-Khuong Résumé :Le but de cet exposé est d’introduire une question intéressante proposée par D. Rydh sur une version analytique de son théorème de type Luna qui dit qu’autour d’un point dont le stabilisateur est linéairement réductif, tout champ algébrique raisonnable est étale-localement équivalent à un champ de quotient. Après avoir formulé la version analytique, on la vérifie pour un (ou deux si le temps permet) espace(s) de modules classique(s): l’espace de Riemann (ou Teichmüller) de structures complexes, dont la version de champs analytiques a été récemment construite par L. Meersseman.
Séminaire de géométrie complexe
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 15 janvier 2024 14:00-15:00 Lieu : Oratrice ou orateur : Vladimir Lazić Résumé :Title: Rigid currents and birational geometry
Abstract: Rigid currents are closed positive currents whose cohomology class contains only one closed positive current. This notion originates (probably) from complex dynamics and has sporadically occured in different contexts. I will survey some of these, and then show how rigid currents occur when one studies the Abundance conjecture in birational geometry. This is joint work with Zhixin Xie.
Séminaire commun de géométrie
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 8 janvier 2024 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 18 décembre 2023 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Résumé :Sur la positivité maximale du cotangent logarithmique associé à un arrangement d’hyperplans
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 11 décembre 2023 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Clara Dérand Résumé :Une variété complexe est dite hyperbolique (au sens de Brody) si elle ne contient pas de courbe entière (non constante). Soit (X,D) est une paire logarithmique lisse, avec X une variété projective lisse et D un diviseur à croisements normaux. Le fibré cotangent logarithmique associé ne peut jamais être ample (on a un quotient trivial en restriction à chaque composante de D). On peut cependant montrer que si ce fibré est « le plus ample possible » (on dira qu’il est ample modulo D), alors le complémentaire X\D est hyperbolique. Plus généralement, on peut étudier la position des courbes entières via la positivité du cotangent logarithmique.
Dans cet exposé, on considérera le cas où D est un arrangement d’hyperplans en position générale dans Pn. On montrera une condition géométrique sur la position des hyperplans pour que le cotangent logarithmique soit ample modulo D, en construisant explicitement des droites d’obstruction. En particulier, on verra que pour au moins 4n-2 hyperplans génériques, le cotangent logarithmique est ample modulo D.
Séminaire groupes algébriques
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 4 décembre 2023 14:00-15:00 Lieu : Oratrice ou orateur : Paul Philippe Résumé :Titre : Ordre de Bruhat affine et théorie de Kazhdan-Lusztig
La structure d’un groupe réductif (ou plus généralement de Kac-Moody) est largement controlée par son groupe de Weyl. En particulier, si G est un groupe de Kac-Moody et B un sous-groupe de Borel, la théorie de Kazhdan-Lusztig relie étroitement la géométrie de la variété de drapeaux G/B avec la structure de Coxeter de W.
Si l’on étudie G au dessus d’un corps discrètement valué, comme les corps p-adiques, on peut remplacer B par le groupe d’Iwahori I pour prendre en compte l’existence d’une valuation. Le groupe de Weyl doit être remplacé par une affinisation W^+. Lorsque G est un groupe réductif, W^+ est encore un groupe de Coxeter ce qui permet d’étendre la théorie de Kazhdan-Lusztig à la variété de drapeaux affines G/I. Ce n’est plus vrai si G est un groupe de Kac-Moody général, en particulier il n’y a pas d’ordre de Bruhat naturel sur W^+. Néanmoins en 2018, D. Muthiah et D. Orr ont pu définir une relation d’ordre et une longueur associée sur W^+ analogue aux ordres de Bruhat. Dans cet exposé, je présenterais plusieurs propriétés de cet ordre que nous avons obtenues avec Auguste Hébert et, si le temps le permet, j’expliquerais leur importance pour la construction d’une théorie de Kazhdan-Lusztig adaptée à ce cadre.
Cayley-Bacharach condition and applications
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 20 novembre 2023 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Francesco Bastianelli Résumé :Séminaire groupes algébriques
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 13 novembre 2023 14:00-15:00 Lieu : Oratrice ou orateur : Alexandre Afgoustidis Résumé :Cet exposé devrait être similaire au séminaire qui sera donné le 18 novembre au séminaire Bourbaki par Alexandre Afgoustidis.
Titre : Progrès récents sur les représentations supercuspidales
Résumé : Soit G un groupe réductif sur un corps local non-archimédien F. Pour les questions de classification des représentations lisses irréductibles de G, l’étude des représentations supercuspidales – celles dont les coefficients matriciels sont à support compact modulo le centre – est en quelque sorte le noyau dur. Les progrès dans cette étude ont été continus depuis cinquante ans. Dans des cas « modérés » où la caractéristique résiduelle de F est suffisamment grande relativement à G, on disposait depuis 2001 d’une construction fort générale de représentations supercuspidales, décrite par J-K. Yu sur la base de nombreux travaux antérieurs. Mais les avancées récentes ont rendu le tableau beaucoup plus complet et beaucoup plus clair. Par exemple, les travaux de J. Fintzen, T. Kaletha et L. Spice fournissent (dans le cas modéré) une classification des représentations supercuspidales, une formule explicite pour « presque tous » leurs caractères, ainsi qu’une correspondance de Langlands explicite pour les paquets entièrement supercuspidaux. Bien que les constructions s’appuient de façon cruciale sur les représentations de groupes finis et la géométrie des immeubles, les formules de caractère et la description des paquets de Langlands présentent des parallèles saisissants avec le cas des groupes réels.