Séminaire de Géométrie complexe

Exposés à venir

Abonnement iCal

Archives

Algebraicity of holomorphic maps to varieties with big representation of pi_1 (séminaire en ligne)

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 31 janvier 2022 14:00-15:00 Lieu : Salle de conférence virtuelle Oratrice ou orateur : Ruiran Sun Résumé :

We show the following algebraicity result for a complex projective variety X with big representation of π1 into an almost simple algebraic group: There exists a proper subvariety Z ⊂ X such that for any algebraic curve C, any holomorphic map f : C → X with f(C) not contained in Z is induced from an algebraic morphism. As a corollary, we show that such varieties are pseudo-Brody hyperbolic.


Sur les relèvements logarithmiques des surfaces globalement F-scindée

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 24 janvier 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Fabio Bernasconi Résumé :
Étant donné une variété projective sur un corps algébriquement clos de caractéristique , c’est intéressante comprendre les éventuelles obstructions géométriques et arithmétiques à l’existence d’un relèvement en caractéristique nulle. Dans cette direction, motivée par le cas des variétés abéliennes et des surfaces K3, on conjecture que les variétés de Calabi-Yau ordinaires devraient admettre un relèvement sur l’anneau des vecteurs de Witt .

Je rapporterai un travail conjoint avec I. Brivio, T. Kawakami et J. Witaszek où nous montrons que les surfaces globalement -scindées (qui peuvent être considérées comme des paires log Calabi-Yau qui se comportent arithmétiquement bien) sont log-relevable sur . Comme corollaire, on déduit la borne de Bogomolov sur le nombre de points singuliers des surfaces klt del Pezzo -scindées.

Equivariant cobordism of horospherical varieties

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 17 janvier 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Henry July Résumé :

We study the T-equivariant cobordism rings for the action of a maximal torus T on smooth varieties over an algebraically closed field of characteristic zero. The rational T-equivariant cobordism rings of a wide range of examples were computed in recent years including the classes of toric varieties, flag varieties and symmetric varieties of minimal rank using mainly the technique of localisation at fixed points. We seek to extend the known results to any smooth projective (horo-)spherical variety with an action of a maximal torus T. Among others, we obtain explicit presentations for the rational equivariant cobordism rings of odd symplectic Grassmannians IG(k,2n+1). Furthermore, using the self-intersection formula, we are able to compute a wide range of classes in the rational T-equivariant cobordism ring.


Séminaire commun de Géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 janvier 2022 14:00-16:00 Lieu : Oratrice ou orateur : Laura Monk Résumé :

The Hodge locus

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 13 décembre 2021 14:00-15:00 Lieu : Oratrice ou orateur : Gregorio Baldi Résumé :
I will report on a joint work with Klingler and Ullmo. Given a polarizable variation of Hodge structure on a smooth quasi projective variety S (e.g. the one associated to a family of pure motives over S), Cattani, Deligne and Kaplan proved that its Hodge locus (the locus of closed points of S where exceptional Hodge tensors appear) is a *countable* union of closed algebraic subvarieties of S. In this talk I will discuss when this Hodge locus is actually algebraic.
Proofs, applications and related results will be discussed in the forthcoming days.
(De façon exceptionnelle, le séminaire aura lieu en salle 313)

Séminaire commun de Géométrie - Endoscopy and geometry

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 6 décembre 2021 14:00-16:00 Lieu : Oratrice ou orateur : Roma Bezrukavnikov Résumé :

Irreducible characters form an interesting basis in the space of of class functions (i.e. functions constant on conjugacy classes) on a finite group G, the goal of harmonic analysis and representation theory is to study properties and applications of that basis.

If G is a reductive p-adic group, such as the group of invertible matrices with p-adic entries, then irreducible characters are known to behave in a regular way not only on conjugacy classes (on  which they are constant) but also on the so called stable conjugacy classes, i.e. the set of elements conjugate over the algebraic closure of the base field (for example, two sheets of a hyperboloid in R^3 are two SL(3,R) orbits inside a single stable orbit). This is studied in the theory of endoscopy in harmonic analysis on p-adic group.

I will give an overview of a long term joint project with Kazhdan and Varshavsky aimed at applying algebraic geometry, including l-adic sheaves, to problems in that theory.

%%%%%%%%%%%%%

Comme tous les Séminaires Communs de Géométrie, cet exposé sera en deux parties : une première partie « colloquium » de 14h à 14h45, puis une partie plus avancée de 15h15 à 16h. Une pause thé-gateaux-géométrie vous est proposée entre les deux exposés.


Analytic cycles of finite type

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 29 novembre 2021 15:30-16:30 Lieu : Salle Döblin Oratrice ou orateur : Jón Magnússon Résumé :


Fibré vectoriel pseudo-effectif et fibré numériquement plat

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 29 novembre 2021 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Xiaojun Wu Résumé :

Dans cet exposé, je présenterai la généralisation de la notion de fibré en droites pseudo-effectif en rang supérieur. En particulier, je présenterai la preuve du fait qu’un fibré vectoriel pseudo-effectif au sens fort avec la première classe de Chern nulle sur une variété kählerienne compacte est numériqument plat. La preuve est basée sur une construction naturelle d’un courant positif dans la première classe de Chern qui s’applique à la grande généralité. Le cas projectif était démontré par Campana-Cao-Matsumura et Hosono-Iwai-Matsumura.Comme conséquence, le fibré tangent ou cotangent de variétés de Calabi-Yau ou symplectique holomorphe irréductible n’est pas pseudo-effectif au sens fort.


Théorie de Gromov-Witten des intersections complètes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 22 novembre 2021 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hülya Argüz Résumé :

Je vais décrire un algorithme calculant les invariants de Gromov-Witten des intersections complètes dans l’espace projectif, en tout genre et avec des insertions arbitraires. L’idée principale est de montrer que les invariants avec insertions de classes de cohomologie primitives sont contrôlés par la monodromie et des invariants définis sans insertions primitives mais avec des noeuds imposés sur les courbes. Pour calculer ces invariants de Gromov-Witten nodaux, nous introduisons la notion nouvelle d’invariants de Gromov-Witten relatifs nodaux. C’est un travail en commun avec Pierrick Bousseau, Rahul Pandharipande, et Dimitri Zvonkine (arxiv:2109.13323).


À la recherche de tores plats, une approche diploïde - Séminaire Commun de Géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 15 novembre 2021 14:00-16:00 Lieu : Oratrice ou orateur : Alba Malaga Résumé :

On peut obtenir un tore en recollant abstraitement les deux paires de côtés opposés d’un carré, sans le déformer. Un tel tore vient alors naturellement fourni d’une métrique à courbure constante nulle, c’est pourquoi on l’appelle tore plat carré. Cette construction se généralise en prenant n’importe quel parallélogramme à la place du carré. Modulo une relation d’équivalence, tous les tores plats vivent alors sur la courbe modulaire.

Dans cet exposé, je présenterai une construction assez simple qui permet d’obtenir tous les tores de la courbe modulaire comme des polyèdres et j’esquisserai une demonstration de ce fait. Je présenterai aussi des variations de la construction qui permettent d’obtenir des exemples de réalisations polyédrales de surfaces de translation.Ceci est un travail en collaboration avec Samuel Lelièvre (Orsay) et Pierre Arnoux (Marseille).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Comme tous les « Séminaires communs de géométrie », ce séminaire comprend deux séances : de 14h à 15h45, un exposé « colloquium » s’adressant à tous les mathématiciens, puis de 15h15 à 16h un exposé  « recherche » qui approfondira ce qui aura été présenté au premier exposé.


5 6 7 8 9 10 11 12 13 14 15 16