Séminaire de Géométrie complexe

Exposés à venir

Abonnement iCal

Archives

Séminaire commun de géométrie - Cônes de diviseurs sur $\mathbb{P}^3$ éclaté en $8$ points très généraux

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 6 novembre 2023 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Zhixin Xie Résumé :
Cônes de diviseurs sur $\mathbb{P}^3$ éclaté en $8$ points très généraux

Soit $X$ l’éclatement de $\mathbb{P}^3$ en $8$ points très généraux. Alors $X$ est une variété projective lisse dont le diviseur anticanonique est nef mais non semiample.

Dans cet exposé, on donne une description explicite sur le cône nef et le cône pseudoeffectif de $X$. De plus, on montre qu’un certain groupe de Weyl agit sur le cône mobile effectif de $X$ avec un domaine fondamental rationnel polyhédral. Il s’agit d’un travail en collaboration avec Isabel Stenger.


Shafarevich morphism for linear representations in positive characteristic and hyperbolicity

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 octobre 2023 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ya Deng Résumé :

The Shafarevich conjecture predicts the holomorphic convexity of complex projective varieties. It results in the existence of the Shafarevich morphism. In the last three decades, this conjecture has been extensively studied when considering cases where fundamental groups are subgroups of complex general linear groups. In this talk I will discuss some recent work on the construction of Shafarevich morphism for any linear representation $\rho:\pi_1(X)\to GL_N(K)$ where $X$ is any complex quasi-projective variety and $K$ is any field of positive characteristic. I will also explain the proof of the generalized Green-Griffiths-Lang conjecture for $X$ when $\rho$ is a big representation. This talk is based on a joint work with Yamanoi.


Séminaire Commun de Géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 2 octobre 2023 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazotte Résumé :

Séminaire Commun de Géométrie - Géométries de Hilbert et Funk, les mondes engloutis des convexes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 juillet 2023 14:00-16:00 Lieu : Oratrice ou orateur : Constantin Vernicos Résumé :

Géométries de Hilbert et Funk, les mondes engloutis des convexes

Le model de Klein ou projectif de la géométrie hyperbolique se définit à l’aide de la convexité de la boule euclidienne et le birapport. Hilbert fera remarquer à Klein que sa construction permet de définir de nouvelles géométries à l’intérieur de n’importe quel convexe.
Elle est fortement lié à une autre géométrie de nature affine, dite de Funk. Je me propose de vous faire une introduction à ces géométries et vous mener jusqu’à quelques résultats récents obtenus avec Faifman et Walsh qui relient la croissance volumique de ces géométries aux conjectures de Mahler et Kalaï.


Séminaire Commun - Sergey Lysenko

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 19 juin 2023 14:00-16:00 Lieu : Oratrice ou orateur : Sergey Lysenko Résumé :

titre: geometrisation de la representation de Weil.

resumé: On va presenter la geometrisation de la representation de Weil
du groupe metaplectique sur un corps fini. Si le temps le permet, on
discutera aussi le cas de la representation de Weil du groupe
metaplectique sur un corps local non-archimédien et les applications
pour le programme de Langlands geometrique.


Sous-schémas en groupes paraboliques en caractéristique positive

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 12 juin 2023 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Matilde Maccan Résumé :
Dans l’étude des variétés de drapeaux non séparés, i.e. quotients projectifs X=G/P d’un groupe (semi)simple G, en caractéristique p>0 on s’interesse aux sous-schémas en groupes paraboliques P non réduits. On suppose que le groupe de Picard de X est isomorphe à Z, ce qui revient à dire que la partie réduite de P est un parabolique lisse maximal.
En tout type et caractéristique, sauf pour p=2 en type G_2, ces sous-groupes s’obtiennent tous à partir de noyaux d’isogenies purement inseparables : cela generalise les travaux de Haboush-Lauritzen et Wenzel sur le sujet.
On introduit une classification des isogenies avec source simplement connexe, ensuite on présente une esquisse de la preuve du résultat principal. Si le temps le permet, on terminera avec le cas de G_2 en caractéristique 2, ce qui fournit une classification complète en rang de Picard 1.

Séminaire Commun de Géométrie - Dualité structures complexes-hyperboliques et projectives réelles

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 5 juin 2023 14:00-16:00 Lieu : Oratrice ou orateur : Andrès Sambarino Résumé :
Une dualité entre les structures complexe-hyperboliques et les structures projectives réelles
Soit $M$ une variété (réelle-)hyperbolique fermé. Un résultat classique dû à Bourdon entraîne que pour toute action convexe co-compact du $\pi_1M$ dans l’espace hyperbolique-complexe, la dimension de Hausdorff de son ensemble limite est minorée par $n-1$, avec égalité uniquement lorsque l’action laisse invariante une copie totalement géodésique de l’espace hyperbolique réel.
Dans cette exposé on regardera une version infinitésimale de cet énoncé, portant sur la deuxième variation de la dimension de Hausdorff de l’ensemble limite, pour des déformations de cette dernière action. Notre calcul se base sur une étude de l’espace des structures projectives réelles sur $M$ et d’une métrique naturelle, dite de Pression, qu’il porte.
C’est un travail en collaboration avec M. Bridgeman, B. Pozzetti et A. Wienhard.

Les singularités I-bonnes: l'intersection entre la théorie analytique et la théorie algébrique

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 mai 2023 14:00-15:00 Lieu : Oratrice ou orateur : Mingchen Xia Résumé :
Les fibrés vectoriels sur une variété projective complexe lisse admettent de nombreuses théories algébriques. En particulier, on peut définir les classes de Chern, les nombres d’intersection etc. D‘autre part, si les fibrés sont munis de métriques Hermitiennes lisses, ces théories algébriques ont des analogues analytiques. Par exemple, au lieu des classes de Chern, on considère les formes de Chern qui représentent les classes de Chern.
Quand les métriques sont singulières, les objets définis au point de vue analytique ne représentent pas toujours les objects algébriques correspondants. Nous introduirons une notion d’I-bonnes singularités sur les fibrés vectoriels. On verra que quand les singularités sont I-bonnes, aucune pathologie ne se produit. Cette notion généralise partiellement celle de bonne métrique de Mumford.

Séminaire Commun de Géométrie - équidistribution d'intersections typiques avec des sous-variétés localement homogènes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 15 mai 2023 14:00-16:00 Lieu : Oratrice ou orateur : Nicolas Tholozan Résumé :
Titre: équidistribution d’intersections typiques avec des sous-variétés localement homogènes
Résumé: Je présenterai un travail en collaboration avec Salim Tayou qui donne une réponse assez générale à la question suivante: Etant donnée une sous-variété V d’un espace localement homogène X et une suite équidistribuée O_n de sous-espaces localement homogènes de X, vers quoi s’équidistribue l’intersection de O_n avec V ?
Cette question est principalement motivée par ses applications à la théorie de Hodge. Notre réponse fournit par exemple des théorèmes d’équidistribution pour le lieu de Noether—Lefschetz d’une famille de variété algébriques ou pour les variétés abéliennes à multiplication complexe.

Séminaire Commun de Géométrie - Géométrie des surfaces plates de grand genre

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 avril 2023 14:00-16:00 Lieu : Oratrice ou orateur : Elise Goujard Résumé :

Dans cet exposé on s’intéressera aux surfaces de demi-translation et plus particulièrement aux surfaces à petits carreaux de demi-translation. Après avoir rappelé quelques résultats sur la répartition de ces surfaces dans les espaces de modules de surfaces plates, j’exposerai des résultats récents et des conjectures sur la géométrie et la combinatoire de ces surfaces en grand genre.

Dans le cas générique (strates principales des espaces de modules), ces résultats sont dus à un travail en collaboration avec V. Delecroix, P.Zograf and A. Zorich, et s’interprètent également en terme de mutlicourbes fermées sur les surfaces. J’expliquerai également ce que l’on sait faire dans le cas des strates impaires et les conjectures correspondantes (travail en commun avec E. Duryev et I. Yakovlev).


1 2 3 4 5 6 7 8 9 10 11 12