L'IECL

Séminaire des doctorants

Abonnement iCal : iCal

Exposés à venir

Exposés passés

Relations de dispersion dans les plasmas froids magnétisés.

15 décembre 2016 14:00-15:00 -
Oratrice ou orateur : Adrien Fontaine
Résumé :

Dans cet exposé, nous étudierons la notion de relation de dispersion, d’un point de vue physique, et mathématiques. Nous nous intéresserons plus particulièrement au cas des plasmas froids magnétisés à travers l’exemple des ceintures de Van Allen. Le but sera alors d’exposer la situation physique étudiée et les différents résultats obtenus jusqu’à maintenant sur le sujet.


Les paires de Gelfand Nilpotentes

24 novembre 2016 14:00-15:00 -
Oratrice ou orateur : Allan Merino
Résumé :

Dans les années 1930, suite aux travaux de Elie Cartan et Hermann Weyl, il a été observé que des liens fondamentaux existaient entre la théorie des fonctions spéciales (introduites en analyse au 19e siècle (ce sont des fonctions analytiques non élémentaires qui sont apparues comme des solutions d’équations de la physique mathématiques, comme les fonctions de Bessel ou les fonctions hypergéométriques) et la théorie des représentations des groupes de Lie linéaires. En particulier, les fonctions sphériques jouent un rôle important dans l’étude des représentations de dimensions infinies de ces groupes.
Dans les années 1950, Gelfand introduit formellement le concept qui porte aujourd’hui son nom, en considérant un groupe G, un sous-groupe compact K et en étudiant les fonctions sur G étant K-bi-invariantes.
Ce sera le point de départ de cet exposé. Je commencerai par introduire la notion de paires de Gelfand en donnant quelques propriétés de ces dernières. Le but sera ensuite de donner quelques résultats concernant les fonctions et mesures sphériques et d’appliquer cela dans un cadre bien précis: les paires de Gelfand nilpotentes. Pour cela, on utilisera un exemple fondamental dans ce cadre, celui où K = U(n, C) et G défini comme le produit semi-direct de K avec le groupe de Heisenberg Hn (suivant les travaux de Benson – Jenkins – Ratcliff)


Construction de SLq(2) à partir de la théorie des noeuds

17 novembre 2016 14:00-15:00 -
Oratrice ou orateur : Ruben Martos
Résumé :

Tout d’abord, étant donné un nombre qinmathbbC (tel que q2neq1) on donnera la définition classique de SLq(2) en tant qu’algèbre de Hopf.

Le but de cet exposé est de donner une motivation de cette définition à partir de la théorie des noeuds. Pour cela, on commencera par rappeler quelques notions élémentaires de la théorie des noeuds en donnant une version simple et adaptée du polynôme de Jones. Ensuite, on décrira de façon succincte une méthode de manipulation des noeuds en associant des matrices à chaque « minimum » , « maximum » ou croisement du noeud (emph{méthode qui s’inspire de la théorie quantique des champs}). Ainsi, la version adaptée du polynôme de Jones que l’on a construit au début pourra être modélisée en termes de matrices, ce qui nous permettra de conclure la construction du groupe quantique SLq(2).


Méthodes de couplage et pharmacocinétique

20 octobre 2016 14:00-15:00 -
Oratrice ou orateur : Florian Bouguet
Résumé :

Cet exposé tout public sera l’occasion d’introduire la notion probabiliste de couplage, et de la mettre en place pour étudier le KDEM (kinetic dietary exposure model) introduit par Bertail, Clémençon et Tressou en 2008. Nous verrons comment ce modèle de pharmacocinétique, ou contamination alimentaire, se modélise par un processus de Markov déterministe par morceaux, et comment on peut obtenir des estimés sur sa vitesse de convergence vers une mesure stationnaire.


Introduction à la théorie quantique des champs

13 octobre 2016 14:00-15:00 -
Oratrice ou orateur : Alvarez Benjamin
Résumé :

Qui des deux jumeaux, de celui qui reste sur terre ou de celui qui voyage à grande vitesse, vieillit le plus vite? Le chat de Schröndiger est-il mort ou en vie? Les objets quantiques sont-ils des ondes ou des particules? Pourquoi ne peut-on pas connaître à la fois la vitesse et la position d’un objet quantique? L’intuition et le langage naturels semblent impuissants face à ces questions et l’utilisation des mathématiques semblent incontournables. Je vous propose donc de découvrir, ou de redécouvrir, la théorie de la relativité restreinte et la mécanique quantique dont le mariage a donné naissance à la théorie des champs quantiques, le cadre formel du célèbre modèle standard de la physique des particules.


Expanseurs

29 septembre 2016 14:00-15:00 -
Oratrice ou orateur : Clément Dell'Aiera
Résumé :

Je voudrais vous présenter dans cet exposé une notion très utilisée en géométrie asymptotique (Coarse Geometry) : les expanseurs.
Je partirai d’un problème concret de théorie des réseaux pour arriver à la notion d’expanseur. Nous exposerons ensuite quelques propriétés métriques remarquables de ces objets, notamment le fait qu’ils n’admettent pas de plongement uniforme dans l’espace de Hilbert, et les conséquences que cela a pour mon travail de thèse.


Schémas AP pour des équations cinétiques avec limite de diffusion fractionnaire.

1 juillet 2016 14:00-15:00 -
Oratrice ou orateur : Hélène Hivert (Université de Renne)
Résumé :

Dans cet exposé, je considérerai une équation cinétique collisionnelle qui dégénère en une équation de diffusion fractionnaire quand le nombre de Knudsen tend vers 0.
Cette limite est obtenue en considérant des particules dont l’équilibre est une fonction à décroissance polynomiale.


Schémas AP pour des équations cinétiques avec limite de diffusion fractionnaire.

1 juillet 2016 14:00-15:00 -
Oratrice ou orateur : Hélène Hivert (Université de Renne)
Résumé :

Dans cet exposé, je considérerai une équation cinétique collisionnelle qui dégénère en une équation de diffusion fractionnaire quand le nombre de Knudsen tend vers 0.
Cette limite est obtenue en considérant des particules dont l’équilibre est une fonction à décroissance polynomiale.


Algèbres de Lie simples réelles et constructions via certaines graduations.

18 mai 2016 14:00-15:00 -
Oratrice ou orateur : Meyer Philippe (Université de Strasbourg)
Résumé :

La classification de Killing-Cartan des algèbres de Lie complexes (semi-)simples implique aussi celle des algèbres de Lie réelles (semi-)simples ;
cependant ces dernières sont plus nombreuses.
Notamment il y a toujours une forme déployée ainsi qu’une forme compacte associées à chaque famille.
Après cette première partie, on va étudier la notion de graduation d’une algèbre de Lie, ainsi que deux graduations spécifiques :
les s-représentations et les graduations de Heisenberg.
Ces deux exemples permettent de construire bien explicitement la forme déployée et compacte d’une algèbre de Lie.


Dualité et caractères.

27 avril 2016 14:00-15:00 -
Oratrice ou orateur : Merino Allan
Résumé :

Lors de mon dernier exposé, j’avais présenté le théorème de dualité de Howe.
Ce dernier met en évidence une correspondance entre certaines représentations associées à une paire duale irréductible
(tilde{G}, tilde{G^{‘}}) dans le groupe métapléctique. Le but de cet exposé est d’obtenir une formule du caractère
pour les représentations pi^{‘} de tilde{G^{‘}} qui apparaissent dans la dualité dans le cas où le groupe tilde{G} est compact.
Pour cela, on commencera par quelques rappels assez généraux concernant la théorie des groupes de Lie compacts et de leurs représentations.
Ensuite, je présenterai la généralisation de la notion de caractère (en dimension infinie) établie par Harish-Chandra dans le milieu des années 50.
Je terminerai cette présentation par une détermination explicite des caractères dans la correspondance de Howe en utilisant les différents outils
vus précédemment.


Sur la détermination du spectre d’une C*-algèbre et de sa topologie.

16 mars 2016 14:00-15:00 -
Oratrice ou orateur : Mougel Jérémy
Résumé :

Applications des groupoïdes en physique. Une introduction à la mécanique quantique.

10 février 2016 14:00-15:00 -
Oratrice ou orateur : Clément Dell'Aiera
Résumé :

Nous présenterons le formalisme hamiltonien de la mécanique classique, puis le formalisme, développé par Souriau, de la mécanique symplectique. La fin de l’exposé visera à introduire la mécanique quantique, via un exemple, et en insistant sur l’aspect historique.


Schémas compacts hermitiens sur une sphère.

20 octobre 2015 14:00-15:00 -
Oratrice ou orateur : Brachet Matthieu
Résumé :

La recherche en climatologie et en océanographie a conduit à résoudre des EDP de plus en plus complexes sur des domaines de plus en plus variés.
Un domaine de calcul naturel est celui de la sphère.
Nous proposons dans cet exposé une méthode basée sur les différences finies sur un maillage de type Cube-Sphère.
Nous verrons comment construire le maillage Cube-Sphère et comment sont calculées les dérivées.
L’ensemble sera utilisé pour le calcul du gradient sphérique.
Pour illustrer cela dans un cadre plus concret et si le temps nous le permet,
nous illustrerons ce calcul avec deux tests : le BUMP mobile et le vortex stationnaire.


Propagation en K-théorie.

20 octobre 2015 14:00-15:00 -
Oratrice ou orateur : Clément Dell'Aiera
Résumé :

La géométrie asymptotique, ou « coarse geometry », se propose d’étudier les propriétés à grande échelle des espaces métriques.
Nous présenterons dans cet exposé comment l’introduction de techniques asymptotiques en K-théorie amène à de nouvelles preuves
de la conjecture de Baum-Connes coarse pour de nouvelles classes de groupes, et de nouvelles preuves de la conjecture de Novikov.


Résolution de l'équation de transport sur la Cube-Sphère en différences finies.

13 mai 2015 14:00-15:00 -
Oratrice ou orateur : Brachet Matthieu
Résumé :

La recherche en climatologie et en océanographie à conduit à résoudre des EDP de plus en plus complexes
sur des domaines de plus en plus variés. Un domaine d’approximation qui semble naturel est celui de la sphère.
Nous proposons dans cet exposé une méthode de calcul basée sur les différences finies sur un maillage de type
Cube-Sphère. Après un rapide aperçu de quelques maillages possibles, nous verrons comment construire le maillage
Cube-Sphère. Puis nous calculerons le gradient sur ce maillage. De manière à illustrer ces calculs, nous résoudrons
l’équation de transport à l’aide d’une méthode de Runge-Kutta en temps filtrée en espace. Si le temps le permet,
nous présenterons les résultats numériques associésà deux test : Le corps solide en rotation autour de la sphère
et le vortex stationnaire.


Les groupes de Lie compacts et leurs représentations complexes.

6 mai 2015 14:00-15:00 -
Oratrice ou orateur : Merino Allan
Résumé :

Le but de cet exposé est de déterminer « explicitement » le dual unitaire d’un groupe de Lie compact.
Pour cela, on commencera par quelques rappels assez généraux concernant les groupes de Lie, les algèbre de Lie,
la mesure de Haar … On verra que si le groupe de Lie G est compact, alors son algèbre de Lie est réductive,
et que ceci est un des points de départ pour la compréhension du dual unitaire (on expliquera au préalable
pourquoi on est peut être amené à s’intéresser aux représentations de l’algèbre de Lie de G). On appliquera
cela dans un cas explicite, à savoir pour G = SU(2). Si le temps le permet, on fera une ouverture sur les
représentations des groupes de Lie non compacts, en parlant par exemple de la notion de (J,K)-modules.


Représentation du groupe symétrique et dualité de Schur.

2 avril 2015 14:00-15:00 -
Oratrice ou orateur : Merino Allan
Résumé :

La théorie des représentations a été introduite vers la fin de XIXe siècle par le mathématicien allemand
Frobenius, motivé par une lettre de Dedekind. Cette théorie a connu un développement considérable depuis,
et vouloir essayer de résumer cette dernière relèverait de la folie. Le but des présentations que je vais
faire est de donner quelques idées sur ce qui peut se faire, et mettre en avant certains des nombreux
problèmes qu’il reste actuellement au sein de cette magnifique théorie. Pour cette première présentation,
je commencerai par rappeler les fondamentaux de la théorie des représentations linéaires des groupes finis.
Ensuite, on étudiera ensemble un exemple très intéressant, à savoir le groupe symétrique. Le but étant de
déterminer explicitement le dual unitaire dans ce cas. Si le temps le permet, je conclurai par une présentation
très rapide de la dualité de Schur-Weyl, ce qui nous permettra de voir un exemple où les représentations du
groupe symétrique apparaissent explicitement.


Préconditionnement et chémas RSS.

19 mars 2015 14:00-15:00 -
Oratrice ou orateur : Brachet Matthieu
Résumé :

Approximation des équations aux dérivées partielles - Les différences finies. Episode 2.

15 décembre 2014 14:00-15:00 -
Oratrice ou orateur : Brachet Matthieu
Résumé :

Approximation des équations aux dérivées partielles - Les différences finies. Episode 1.

8 décembre 2014 14:00-15:00 -
Oratrice ou orateur : Brachet Matthieu
Résumé :

L’approximation des équations aux dérivées partielles est un domaine mathématique lié à de nombreuses autres
sciences. Pour cette raison il est important de tenir compte des contraintes que ces autres domaines
apportent. Après une première partie dans laquelle j’introduirais l’approximation des EDP, je parlerais des
différences finies. Les méthodes de différences finies sont historiquement les premières méthodes a avoir été
développées. Après en avoir énoncé quelques résultats théoriques et présenté quelques schémas classiques, dans
une troisième partie, nous constaterons des limites de ces méthodes et nous proposerons quelques améliorations.


1 2 3 4 5 6 7 8 9 10