L'IECL

Séminaire de géométrie complexe

Séminaire de géométrie complexe

Abonnement iCal : iCal

Exposés à venir

Exposés passés

Structures de Hodge lacées et fibrés harmoniques

16 novembre 2015 14:00-15:00 -
Oratrice ou orateur : Jeremy Daniel
Résumé :

La théorie de Hodge non-abélienne étudie la correspondance entre fibrés
plats et fibrés de Higgs sur une variété projective, correspondance
établie via la notion intermédiaire de fibré harmonique. On expliquera
comment la donnée d’un fibré harmonique est équivalente à  la donnée d’une
variation de structures de Hodge lacées, ces structure étant des analogues
en dimension infinie des structures de Hodge. Cette approche permet en
particulier d’associer une application des périodes à  tout fibré
harmonique, et ainsi d’imiter les techniques de théorie de Hodge
classique.


Semi-positivité du cotangent logarithmique et conjecture de Shafarevich-Viehweg [d'après Campana, Păun, Taji,...]

2 novembre 2015 14:00-15:00 -
Oratrice ou orateur : Benoît Claudon
Résumé :

Démontrée par A. Parshin et S. Arakelov au début des années 1970,
la conjecture d’hyperbolicité de Shafarevich affirme qu’une famille de
courbes de genre g ≥ 2 paramétrée par une courbe non hyperbolique
(c’est-à -dire isomorphe à  $mathbb P^1$, $mathbb C$, $mathbb C^*$ ou une courbe elliptique)
est automatiquement isotriviale : les modules des fibres lisses sont
constants. En dimension supérieure, les travaux de E. Viehweg sur les
modules des variétés canoniquement polarisées l’ont amené à  formuler la
généralisation suivante : si une famille de variétés canoniquement
polarisées (paramétrée par une base quasi-projective) est de variation
maximale, alors la base est de log-type général. Il s’agit donc d’une
forme d’hyperbolicité algébrique attendue pour l’espace des modules. En
adaptant des résultats dus à  Y. Miyaoka sur la semi-positivité
générique du fibré cotangent au cadre logarithmique (et orbifolde), F.
Campana et M. Păun ont récemment obtenu une réponse positive à  la
conjecture de Viehweg. Cet exposé sera également l’occasion de
donner un aperçu de la classification des orbifoldes développée par
F. Campana. C’est d’ailleurs dans ce cadre que s’énonce la forme
optimale de la conjecture de Viehweg démontrée par B. Taji.


Familles d'espaces de modules de faisceaux stables sur les surfaces K3

8 juin 2015 14:00-15:00 -
Oratrice ou orateur : Matei Toma
Résumé :

Structure de l'espace de Teichmà¼ller en dimension supérieure.

1 juin 2015 14:00-15:00 -
Oratrice ou orateur : Laurent Meersseman
Résumé :

L’espace de Teichmà¼ller d’une variété $X$ réelle compacte orientée est classiquement défini comme le quotient de l’ensemble des opérateurs complexes sur $X$ par l’action du groupe des difféomorphismes isotopes à  l’identité. C’est naturellement une variété complexe lorsque $X$ est une surface. En dimension supérieure, malheureusement, ce n’est en général ni une variété ni un espace analytique, mais seulement un champ analytique. Le but de cet exposé est de décrire la structure locale de ce champ, en comparant l’espace de Teichmà¼ller au voisinage d’un point $J$ et l’espace de Kuranishi $K$ de $J$. Le point central est d’expliquer qu’il ne s’agit pas simplement du quotient de $K$ par l’action du groupe d’automorphismes de $J$, mais qu’il faut intégrer l’holonomie d’une structure multifeuilletée de l’espace des opérateurs complexes sur $X$.


Variation des espaces de modules de faisceaux semistables sur les variétés de dimension supérieure

18 mai 2015 14:00-15:00 -
Oratrice ou orateur : Matei Toma
Résumé :

Gieseker et Maruyama ont construit des espaces de modules de faisceaux semistables au dessus des variétés projectives polarisées de dimension supérieure a un. Le changement de la polarisation entraine en général une variation des espaces de modules correspondants, variation qui a été l’objet d’études approfondies en dimension deux. La poursuite de ces études en dimension supérieure s’est heurtée a l’apparition de façon essentielle des polarisations irrationnelles pour lesquelles même une construction des espaces de modules n’était pas disponible. Dans cet exposé nous présentons un travail en commun avec Daniel Greb et Julius Ross, dans lequel nous introduisons et étudions une nouvelle notion de stabilité qui nous permet de résoudre ces problèmes de construction et de variation au moins en dimension trois. Les nouveaux espaces de modules apparaissent comme des sous-schémas des espaces de modules de représentations de carquois.


Formes différentielles symétriques sur les variétés intersections complètes

11 mai 2015 14:00-15:00 -
Oratrice ou orateur : Damian Brotbek
Résumé :

L’existence de formes différentielles symétriques sur une variété projective a de nombreuses conséquences géométriques.
Dans cette exposé nous étudierons les formes différentielles symétriques sur les variétés intersections complètes dans l’espace projectif. Nous expliquerons comment dans certains cas il est possible de construire explicitement de tels objets et quelles conséquences on peut en tirer.


Feuilletages lisses sur variétés homogènes compactes kaehleriennes

4 mai 2015 14:00-15:00 -
Oratrice ou orateur : Federico Lo Bianco
Résumé :

Codimension 1 (possibly singular) foliations on complex tori have been classified in
a work by Brunella, whereas Ghys studied codimension 1 smooth foliations on homogeneous
varieties, and managed to give a complete classification in the Kähler case. In a
joint work with Pereira we managed to find a generalization of Ghys’s results for smooth
foliations of arbitrary codimension on homogeneous compact Kähler manifolds.
The first result is a (rough) general classification theorem for such foliations; as an immediate
corollary, we prove that in the case of homogeneous compact rational Kähler manifolds
all smooth foliations are in fact locally trivial fibrations. By a more refined analysis of the
sheaves defining the foliation, we also prove that either there exists a non-trivial invariant
subvariety or the foliation is essentially given by a linear foliation on a torus.


Sous-groupes résolubles du groupe de Cremona

27 avril 2015 14:00-15:00 -
Oratrice ou orateur : Julie Déserti
Résumé :

le groupe de Cremona est le groupe des transformations birationnelles du plan projectif complexe dans lui-même. Après avoir rappelé l’action du groupe de Cremona sur l’espace de Picard-Manin, j’utiliserai celle-ci pour décrire les sous-groupes résolubles du groupe de Cremona.


Perverse sheaves and applications

7 avril 2015 14:00-15:00 -
Oratrice ou orateur : Annonce : mini-conférence à  Dijon
Résumé :

Organisé par Johannes Nagel (Dijon) et Damien Mégy (Nancy). Deux mini-cours de trois heures: « Introduction to Mixed Hodge Modules » par Claude Sabbah et Damien Mégy, et « The role of algebraic tori in the Baily-Borel compactifications: Hodge and group theoretic aspects », par Chris Peters.

Plus d’informations sur http://math.u-bourgogne.fr/IMB/dubouloz/PS-A-2015/


Déformations isomonodromiques algébriques

30 mars 2015 14:00-15:00 -
Oratrice ou orateur : Gaà«l Cousin
Résumé :

L’exposé portera sur les connexions logarithmiques sur la sphère de Riemann et leurs déformations isomonodromiques.
On introduira une notion d’algébrisabilté pour le germe de déformation isomonodromique universelle d’une telle connexion.
Le résultat principal est le suivant (avec quelques hypothèses) :
Pour un connexion logarithmique D sur un fibré vectoriel au dessus de CP1,
la déformation isomonodromique universelle de D est algébrisable
si et seulement si
la classe de conjugaison de sa monodromie a une orbite finie sous le Mapping Class Group de la sphère épointée.

Si le temps le permet on présentera un travail en cours (avec D. Moussard) déterminant les orbites finies qui apparaissent dans cet énoncé, pour les connexions de rang deux réductibles.


Familles complètes de courbes lisses dans $mathbb P^3$

23 mars 2015 14:00-15:00 -
Oratrice ou orateur : Olivier Benoist
Résumé :

Dans cet exposé, nous étudierons les familles complètes de courbes lisses dans $mathbb P^3$, c’est-à -dire les sous-variétés propres du schéma de Hilbert des courbes lisses dans $mathbb P^3$. D’une part, nous construirons des exemples non triviaux de telles familles. D’autre part, nous obtiendrons des restrictions sur les familles complètes de courbes lisses polarisées pouvant en induire. Les deux résultats reposent sur l’étude de la forte semistabilité de certains fibrés vectoriels.


Convex Geometry of co-adjoint orbits and convex hulls

16 mars 2015 14:00-15:00 -
Oratrice ou orateur : Peter Heinzner
Résumé :

Coadjoint orbits of Lie groups are examples of symplectic manifolds endowed
with a Hamiltonian action. We will consider elliptic coadjoint orbits
of a real semi-simple Lie group $G$. If $G$ is a compact Lie group, then any
orbit $O$ is elliptic. In the general setup the orbit $O$ has a unique invariant
complex structure such that the Kirillov-Kostant-Souriau form is Kählerian.
It turns out that the convex hull $hat O$ of $O$ is closely related to the complex
geometry of $O$. More precisely, the faces of $hat O$ are given as convex hulls of
orbits of centralizer subgroups and there is a strong connection to compact
orbits of parabolic subgroups of the complexi ed group $G^{mathbb C}$.


Structures réelles sur les éclatés de $mathbb P^2$

9 mars 2015 14:00-15:00 -
Oratrice ou orateur : Mohamed Benzerga
Résumé :

Une structure réelle sur une variété projective complexe $X$ est une involution antiholomorphe sur cette variété. La donnée d’une telle structure équivaut à  la donnée d’une variété réelle $X_0$ dont la complexification est isomorphe à  $X$ (on dit alors que $X_0$ est une forme réelle de $X$).
Le but de cet exposé est de montrer comment l’étude des groupes d’automorphismes des éclatés du plan projectif complexe peut être utilisée en vue de donner des éléments de réponse à  la question de la finitude du nombre de classes d’équivalence de structures réelles sur ces éclatés, i.e. la finitude du nombre de leurs formes réelles à  isomorphisme près.


Feuilletage de codimension un ayant une feuille compacte

23 février 2015 14:00-15:00 -
Oratrice ou orateur : Benoît Claudon
Résumé :

Dans un travail en commun avec J. Pereira, F. Loray et F. Touzet, nous nous intéressons aux feuilletages de codimension un (sur une variété kählérienne compacte ou même projective) ayant au moins une feuille compacte. Cette feuille est alors une hypersurface plongée dans la variété ambiante dont le fibré normal est topologiquement de torsion et une partie importante de l’information sur la structure transverse du feuilletage est contenue dans la représentation d’holonomie. Nous abordons en particulier les problèmes suivants : existence de feuilletages ayant pour feuille une hypersurface donnée, feuilletages ayant une holonomie abélienne et résultats de factorisation. La plupart des résultats que nous obtenons en réponse à  ces problèmes s’énoncent en termes de théorie d’Ueda et cet exposé sera également l’occasion d’un bref survol de cette dernière.


Groupe de travail sur les faisceaux pervers

13 février 2015 10:00-18:00 -
Oratrice ou orateur : Johannes Nagel, Damien Mégy
Résumé :

Ceci sera la dernière séance du groupe de travail. Un workshop sur le même sujet est prévu à  Dijon, les 7 et 8 avril prochains.

Les exposés porteront sur le théorème de décomposition, à  nouveau un peu sur le yoga des poids, sur certaines descriptions des faisceaux pervers par des carquois, et sur des applications du théorème de décomposition.


Densités des courants positifs fermés et distribution des points périodiques

9 février 2015 14:00-15:00 -
Oratrice ou orateur : Nessim Sibony
Résumé :

La théorie des densités des courants positifs fermés est une extension
de la notion de multiplicité pour les variétés, ou de nombre de Lelong pour les courants.
Les densités sont des classes de cohomologie associées aux courants tangents, à  un courant donné,
le long d’une sous variété complexe.Ces classes vivent dans le fibré normal à  la sous variété et décrivent les propriétés tangentielles du courant.
La notion est utile pour développer une théorie des intersections non-génériques.Comme application on obtient le Théorème suivant.
Soit f un automorphisme polynomial régulier de C^k. Les points périodiques de type selle
s’equidistribuent selon la mesure d’équilibre de f.
Il s’agit d’un travail en collaboration avec T.C Dinh.


Random metrics, Quantum Hall effect and Kähler geometry

9 février 2015 15:30-16:30 -
Oratrice ou orateur : Semyon Klevtsov
Résumé :

I will talk about two related projects, applying recent methods in Kähler geometry to some questions in physics. First, I will explain, how to use the sections of positive line bundle on Riemann surfaces and on Kahler manifolds to construct Laughlin wave functions for integer and fractional Quantum Hall effect and compute their scaling limits for large number of particles. Second, I will talk about a proposal to define statistical sums over geometries, using the approach of random Bergman metrics.


Some examples due to H. Hironaka

19 janvier 2015 14:00-15:00 -
Oratrice ou orateur : Daniel Barlet
Résumé :

The aim of this paper is to give some comments on the construction by H. Hironaka [H.61] of a holomorphic (in fact algebraic) family of compact complex manifolds parametrized by $mathbb C$ such for all $u in mathbb C setminus {0}$ the fiber is projective, but such that the fiber at the origin is non kählerian. We also explain why it is not possible to make in the same way such a family with fiber at $0$ a simpler example of non kählerian Moishezon manifold which is also due to H. Hironaka.

This paper does not give a complete proof of Hironaka’s construction. It only tries to give some help for the reader of this famous article and tries to explain some points which are not explicit although they are well known to specialists.


Géographie des surfaces simplement connexes et arrangements de cubiques planes lisses

15 décembre 2014 13:45-15:00 -
Oratrice ou orateur : Xavier Roulleau
Résumé :

Les nombres de Chern $c_1^2,c_2inmathbb{Z}$ d’une surface complexe lisse minimale $X$ vérifient l’inégalité de Bogomolov-Miyaoka-Yau $c_1^2leq 3c_2$.
Une surface satisfaisant l’égalité $c_1^2=3c_2$ n’est jamais simplement connexe et Bogomolov demandait à  la fin des années 70 si on peut améliorer l’inégalité de Bogomolov-Miyaoka-Yau en $c_1^2leq ac_2$ avec $a<3$, si on suppose que $X$ est de plus simplement connexe.
Dans cet exposé, on montre qu'il existe des surfaces spin (resp. non-spin) simplement connexes avec $c_1^2/c_2$ arbitrairement proche de 3, et donc que la réponse est négative. La construction se fait à  l’aide de revêtements cycliques du plan ramifiés au-dessus de certains arrangements de cubiques planes lisses, et est un écho des constructions de Hirzebruch de surfaces vérifiant l’égalité $c_1^2=3c_2$ obtenues à  l’aide d’arrangements de droites.

Travail en collaboration avec G. Urzua.


Sur la stabilité des fibrés homogènes

8 décembre 2014 14:00-15:00 -
Oratrice ou orateur : Pierre-Emmanuel Chaput
Résumé :

Sur un espace homogène, tout fibré équivariant irréductible est stable au sens de Mumford. J’esquisserai une preuve de ce résultat due à  Biswas. Par ailleurs, par des résultats de Mehta-Ramanathan ou Flenner, la restriction d’un fibré stable à  une intersection complète générique de grand degré reste stable.
Une question naturelle se pose alors : étant donné un fibré homogène irréductible, sur quelles intersections complètes le fibré devient-il instable, s’il y en a ?
Je présenterai plusieurs résultats montrant que, dans le cas du fibré cotangent sur un espace homogène minuscule (par exemple une Grassmannienne), de telles intersections complètes sont très rares. Leurs démonstrations reposeront sur un théorème d’annulation original concernant la cohomologie de Dolbeault des fibrés en droites sur ces espaces homogènes.


8 9 10 11 12 13 14 15