L'IECL

Séminaire de géométrie différentielle

Abonnement iCal : iCal

Exposés à venir

Exposés passés

Surfaces presque-Fuchsiennes de variétés hyperboliques

19 février 2024 15:30-16:30 - Salle de conférences Nancy
Oratrice ou orateur : Samuel Bronstein
Résumé :

Une surface presque-fuchsienne est une surface minimale dans une variété hyperbolique, dont la seconde forme fondamentale est majorée par 1. Dans ce cas, elle est plongée et on peut identifier la variété hyperbolique ambiante avec le fibré normal à notre surface. Cela amène à l’étude des représentations presque-fuchsiennes de groupes de surfaces dans Isom(ℍn)\mathrm{Isom}(\mathbb H^n), qui admettent un disque presque-fuchsien équivariant. On discutera d’abord du cas de Isom(ℍ3)\mathrm{Isom}(\mathbb H^3), dans lequel les représentations presque-fuchsienne forment un voisinage connexe de l’ensemble des représentations fuchsiennes, et ensuite nous verrons un exemple dans ℍ4\mathbb H^4, pour lequel la variété hyperbolique quotient est un fibré en disques de degré 1 sur une surface.


Métriques critiques de fonctionnelles spectrales

12 février 2024 15:30-16:30 - Salle de conférences Nancy
Oratrice ou orateur : David Tewodrose
Résumé :

Je parlerai d’un travail en cours avec Romain Petrides de l’Université Paris Cité dans lequel nous proposons un cadre général permettant de déduire de façon systématique les propriétés géométriques de métriques critiques de fonctionnelles spectrales définies sur une variété compacte lisse donnée. Notre approche permet notamment d’étendre les travaux de Nadirashvili, El Soufi, Ilias, Petrides sur la maximisation des valeurs propres de l’opérateur de Laplace-Beltrami et ceux de Fraser, Schoen et Petrides sur les valeurs propres de Steklov. Nous utilisons de façon cruciale les outils d’analyse non-lisse développé par Clarke dans les années 1970. Je présenterai ces outils et expliquerai comment on les adapte au contexte des métriques critiques de fonctionnelles spectrales.


Généralisations des surfaces de Willmore en dimension 4

29 janvier 2024 15:30-16:30 -
Oratrice ou orateur : Dorian Martino
Résumé :

Mondino-Nguyen ont montré en 2018 que l’énergie de Willmore est essentiellement la seule fonctionnelle, définit pour des surfaces fermées de l’espace euclidien de dimension 3, qui soit invariante par transformations conformes. Motivés par la correspondance AdS/CFT, diverses généralisations des surfaces de Willmore ont été étudiées pour des hypersurfaces fermées de l’espace euclidien de dimension 5. Cependant, le nombre de fonctionnelles invariantes conformes pour des variétés de dimension 4 est beaucoup plus important qu’en dimension 2. En particulier, cette diversité complique le choix d’une généralisation convenable.

En dimension 2, la dualité de Bryant est un outil important de l’étude des surfaces de Willmore. Elle permet d’exhiber une quartique holomorphe, de classifier les sphères Willmore, de construire l’équivalent des données d’Enneper-Weierstrass pour les surfaces minimales… Dans cette présentation, nous verrons qu’une généralisation de cette dualité en dimension 4 permet de mettre en exergue deux fonctionnelles invariantes conformes.


Séminaire commun de géométrie

8 janvier 2024 14:00-16:00 -
Oratrice ou orateur :
Résumé :

Séminaire commun de géométrie

18 décembre 2023 14:00-16:00 - Salle de conférences Nancy
Oratrice ou orateur :
Résumé :

A lower bound of the first Steklov-Dirichlet eigenvalue for eccentric annuli

20 novembre 2023 15:30-16:30 -
Oratrice ou orateur : Dong-Hwi Seo
Résumé :

The Steklov eigenvalue problem is an eigenvalue problem for an operator which is defined in the boundary of a domain. Since the operator is nonlocal, the eigenvalues depend on both the geometries of the interior and the boundary of the domain. In this talk, we consider the Steklov-Dirichlet eigenvalue problem in eccentric annuli and related problems. We obtain a lower bound of the first Steklov-Dirichlet eigenvalues of the eccentric annuli by analyzing the first eigenvalues if the distance between the boundary components are sufficiently close. This is based on joint work with Jiho Hong and Mikyoung Lim.


Séminaire commun de géométrie - Cônes de diviseurs sur P3 éclaté en 8 points très généraux

6 novembre 2023 14:00-16:00 - Salle de conférences Nancy
Oratrice ou orateur : Zhixin Xie
Résumé :
Cônes de diviseurs sur P3 éclaté en 8 points très généraux

Soit X l’éclatement de P3 en 8 points très généraux. Alors X est une variété projective lisse dont le diviseur anticanonique est nef mais non semiample.

Dans cet exposé, on donne une description explicite sur le cône nef et le cône pseudoeffectif de X. De plus, on montre qu’un certain groupe de Weyl agit sur le cône mobile effectif de X avec un domaine fondamental rationnel polyhédral. Il s’agit d’un travail en collaboration avec Isabel Stenger.


Séminaire Commun de Géométrie

2 octobre 2023 14:00-16:00 -
Oratrice ou orateur : Jean-René Chazotte
Résumé :

Séminaire Commun de Géométrie - Géométries de Hilbert et Funk, les mondes engloutis des convexes

3 juillet 2023 14:00-16:00 -
Oratrice ou orateur : Constantin Vernicos
Résumé :

Géométries de Hilbert et Funk, les mondes engloutis des convexes

Le model de Klein ou projectif de la géométrie hyperbolique se définit à l’aide de la convexité de la boule euclidienne et le birapport. Hilbert fera remarquer à Klein que sa construction permet de définir de nouvelles géométries à l’intérieur de n’importe quel convexe.
Elle est fortement lié à une autre géométrie de nature affine, dite de Funk. Je me propose de vous faire une introduction à ces géométries et vous mener jusqu’à quelques résultats récents obtenus avec Faifman et Walsh qui relient la croissance volumique de ces géométries aux conjectures de Mahler et Kalaï.


Géométrie anti-de Sitter et variétés de Gromov-Thurston

26 juin 2023 15:30-16:30 -
Oratrice ou orateur : Daniel Monclair
Résumé :

Les variétés anti-de Sitter (i.e. lorentziennes à courbure -1) globalement hyperboliques de dimension 2+1 sont bien comprises depuis les travaux de Mess qui décrivent leurs espaces de modules. Le cas de la dimension plus grande reste assez énigmatique, et même les topologies possibles ne sont pas connues.
Une variété lorentzienne globalement hyperbolique est toujours difféomorphe à un produit MxR. Dans les exemples connus, M est une variété hyperbolique. Je présenterai une construction, issue d’un travail en commun avec Jean-Marc Schlenker et Nicolas Tholozan, d’exemples pour lesquels M est une variété de Gromov-Thurston (une famille de variétés non hyperboliques à courbure négative).


Séminaire Commun - Sergey Lysenko

19 juin 2023 14:00-16:00 -
Oratrice ou orateur : Sergey Lysenko
Résumé :

titre: geometrisation de la representation de Weil.

resumé: On va presenter la geometrisation de la representation de Weil
du groupe metaplectique sur un corps fini. Si le temps le permet, on
discutera aussi le cas de la representation de Weil du groupe
metaplectique sur un corps local non-archimédien et les applications
pour le programme de Langlands geometrique.


Sur l'aire des surfaces minimales de Lawson dans S^3

12 juin 2023 15:30-16:30 - Salle de conférences Nancy
Oratrice ou orateur : Martin Traizet
Résumé :

Lawson a construit des surfaces minimales de genre arbitraire dans la sphere S^3. J’expliquerai comment construire ces surfaces par une méthode de groupes de lacets — la méthode DPW. Avec cette construction, on arrive à exprimer l’aire comme une série en 1/g où g est le genre. De façon surprenante, les coefficients de cette série s’expriment en fonction de la fonction zeta de Riemann et de multi-zetas. J’expliquerai aussi comment estimer le rayon de convergence de cette série. Travail en collaboration avec Lynn Heller, Sebastian Heller et Steven Charlton.


Séminaire Commun de Géométrie - Dualité structures complexes-hyperboliques et projectives réelles

5 juin 2023 14:00-16:00 -
Oratrice ou orateur : Andrès Sambarino
Résumé :
Une dualité entre les structures complexe-hyperboliques et les structures projectives réelles
Soit M une variété (réelle-)hyperbolique fermé. Un résultat classique dû à Bourdon entraîne que pour toute action convexe co-compact du π1M dans l’espace hyperbolique-complexe, la dimension de Hausdorff de son ensemble limite est minorée par n1, avec égalité uniquement lorsque l’action laisse invariante une copie totalement géodésique de l’espace hyperbolique réel.
Dans cette exposé on regardera une version infinitésimale de cet énoncé, portant sur la deuxième variation de la dimension de Hausdorff de l’ensemble limite, pour des déformations de cette dernière action. Notre calcul se base sur une étude de l’espace des structures projectives réelles sur M et d’une métrique naturelle, dite de Pression, qu’il porte.
C’est un travail en collaboration avec M. Bridgeman, B. Pozzetti et A. Wienhard.

Titre à venir

22 mai 2023 15:30-16:30 -
Oratrice ou orateur : Yann Chaubet
Résumé :

Séminaire Commun de Géométrie - équidistribution d'intersections typiques avec des sous-variétés localement homogènes

15 mai 2023 14:00-16:00 -
Oratrice ou orateur : Nicolas Tholozan
Résumé :
Titre: équidistribution d’intersections typiques avec des sous-variétés localement homogènes
Résumé: Je présenterai un travail en collaboration avec Salim Tayou qui donne une réponse assez générale à la question suivante: Etant donnée une sous-variété V d’un espace localement homogène X et une suite équidistribuée O_n de sous-espaces localement homogènes de X, vers quoi s’équidistribue l’intersection de O_n avec V ?
Cette question est principalement motivée par ses applications à la théorie de Hodge. Notre réponse fournit par exemple des théorèmes d’équidistribution pour le lieu de Noether—Lefschetz d’une famille de variété algébriques ou pour les variétés abéliennes à multiplication complexe.

Vacances - pas de séminaire

24 avril 2023 00:00-00:00 -
Oratrice ou orateur :
Résumé :

Vacances - pas de séminaire

17 avril 2023 00:00-00:00 -
Oratrice ou orateur :
Résumé :

Séminaire Commun de Géométrie - Géométrie des surfaces plates de grand genre

3 avril 2023 14:00-16:00 -
Oratrice ou orateur : Elise Goujard
Résumé :

Dans cet exposé on s’intéressera aux surfaces de demi-translation et plus particulièrement aux surfaces à petits carreaux de demi-translation. Après avoir rappelé quelques résultats sur la répartition de ces surfaces dans les espaces de modules de surfaces plates, j’exposerai des résultats récents et des conjectures sur la géométrie et la combinatoire de ces surfaces en grand genre.

Dans le cas générique (strates principales des espaces de modules), ces résultats sont dus à un travail en collaboration avec V. Delecroix, P.Zograf and A. Zorich, et s’interprètent également en terme de mutlicourbes fermées sur les surfaces. J’expliquerai également ce que l’on sait faire dans le cas des strates impaires et les conjectures correspondantes (travail en commun avec E. Duryev et I. Yakovlev).


Semi-continuité supérieure de l’indice de Morse des immersions de Willmore

27 mars 2023 15:30-16:30 - Salle de conférences Nancy
Oratrice ou orateur : Alexis Michelat
Résumé :

L’indice de Morse d’un point critique d’un lagrangien L est la dimension de l’espace vectoriel
maximal sur lequel la dérivée seconde D^2 L s’annule. Dans la théorie classique des variétés de Hilbert, on montre que l’indice de Morse est semi-continu inférieurement, tandis que la somme de l’indice
de Morse et de la nullité (la dimension du noyau de l’opérateur différentiel associé à la dérivée seconde) est semi-continu supérieurement.
Dans un article récent (arXiv:2212.03124) de Francesca Da Lio, Matilde Gianoca, et Tristan
Rivière, une nouvelle méthode d’estimation de l’indice de Morse est développée dans le cas des
lagrangiens invariants conformes (ce qui inclut les applications harmoniques) en dimension 2. La
preuve repose sur une analyse délicate du comportement de la dérivée seconde dans les régions des
« cous » — qui lient la surface macroscropique à ses « bulles » — ainsi qu’une estimée ponctuelle de
la solution dans ces régions.
Dans cet exposé, nous montrerons comment généraliser cette méthode à l’énergie de Willmore, un
lagrangien invariant conforme associé aux immersions d’une surface de l’espace Euclidien. Les points
critiques de l’énergie de Willmore vérifiant une équation elliptique non-linéaire d’ordre 4, certaines
étapes feront apparaître de redoutables nouvelles difficultés techniques.
Si le temps le permet, nous essaierons de montrer le caractère universel de cette méthode, qui
laisse entrevoir de nombreuses extensions possibles : fonctionnelles de type Ginzburg-Landau en dimension 2, applications bi-harmoniques en dimension 4, fonctionnelle de Yang-Mills en dimension 4,
et généralisation de ces méthodes aux problèmes de min-max.
Travail en collaboration avec Tristan Rivière (ETH Zürich).


Mélange exponentiel du flot de repère sur les variétés hyperbolique géométriquement fini

13 mars 2023 14:00-15:00 -
Oratrice ou orateur : Jialun Li
Résumé :

Soit X une variété hyperbolique géométriquement fini, c-a-d, une variété hyperbolique avec un domaine fondamental de polyédrale fini. Il existe une mesure unique sur la fibre tangent unitaire invariante par le flot géodésique d’entropie maximal, et on considère son relevé dans le fibré des repères. Dans un travail commun avec Pratyush Sarkar et Wenyu Pan, on a démontré que le flot de repère est exponentiellement mélangeant par rapport à cette mesure. Pour établir le mélange exponentiel, on utilise un codage dénombrable de flot et une version de la méthode de Dolgopyat, à la Sarkar-Winter et Tsujii-Zhang. Pour surmonter les difficultés de la structure fractale, on a besoin de grand déviation pour la récurrence symbolique dans les grands ensembles.


1 2 3 4 5 6 7 8 9