Exposés à venir
Exposés passés
Séminaire commun de géométrie - Cônes de diviseurs sur $\mathbb{P}^3$ éclaté en $8$ points très généraux
6 novembre 2023 14:00-16:00 - Salle de conférences NancyOratrice ou orateur : Zhixin Xie
Résumé :
Soit $X$ l’éclatement de $\mathbb{P}^3$ en $8$ points très généraux. Alors $X$ est une variété projective lisse dont le diviseur anticanonique est nef mais non semiample.
Dans cet exposé, on donne une description explicite sur le cône nef et le cône pseudoeffectif de $X$. De plus, on montre qu’un certain groupe de Weyl agit sur le cône mobile effectif de $X$ avec un domaine fondamental rationnel polyhédral. Il s’agit d’un travail en collaboration avec Isabel Stenger.
Séminaire Commun de Géométrie
2 octobre 2023 14:00-16:00 -Oratrice ou orateur : Jean-René Chazotte
Résumé :
Séminaire Commun de Géométrie - Géométries de Hilbert et Funk, les mondes engloutis des convexes
3 juillet 2023 14:00-16:00 -Oratrice ou orateur : Constantin Vernicos
Résumé :
Géométries de Hilbert et Funk, les mondes engloutis des convexes
Le model de Klein ou projectif de la géométrie hyperbolique se définit à l’aide de la convexité de la boule euclidienne et le birapport. Hilbert fera remarquer à Klein que sa construction permet de définir de nouvelles géométries à l’intérieur de n’importe quel convexe.
Elle est fortement lié à une autre géométrie de nature affine, dite de Funk. Je me propose de vous faire une introduction à ces géométries et vous mener jusqu’à quelques résultats récents obtenus avec Faifman et Walsh qui relient la croissance volumique de ces géométries aux conjectures de Mahler et Kalaï.
Géométrie anti-de Sitter et variétés de Gromov-Thurston
26 juin 2023 15:30-16:30 -Oratrice ou orateur : Daniel Monclair
Résumé :
Les variétés anti-de Sitter (i.e. lorentziennes à courbure -1) globalement hyperboliques de dimension 2+1 sont bien comprises depuis les travaux de Mess qui décrivent leurs espaces de modules. Le cas de la dimension plus grande reste assez énigmatique, et même les topologies possibles ne sont pas connues.
Une variété lorentzienne globalement hyperbolique est toujours difféomorphe à un produit MxR. Dans les exemples connus, M est une variété hyperbolique. Je présenterai une construction, issue d’un travail en commun avec Jean-Marc Schlenker et Nicolas Tholozan, d’exemples pour lesquels M est une variété de Gromov-Thurston (une famille de variétés non hyperboliques à courbure négative).
Séminaire Commun - Sergey Lysenko
19 juin 2023 14:00-16:00 -Oratrice ou orateur : Sergey Lysenko
Résumé :
titre: geometrisation de la representation de Weil.
resumé: On va presenter la geometrisation de la representation de Weil
du groupe metaplectique sur un corps fini. Si le temps le permet, on
discutera aussi le cas de la representation de Weil du groupe
metaplectique sur un corps local non-archimédien et les applications
pour le programme de Langlands geometrique.
Sur l'aire des surfaces minimales de Lawson dans S^3
12 juin 2023 15:30-16:30 - Salle de conférences NancyOratrice ou orateur : Martin Traizet
Résumé :
Lawson a construit des surfaces minimales de genre arbitraire dans la sphere S^3. J’expliquerai comment construire ces surfaces par une méthode de groupes de lacets — la méthode DPW. Avec cette construction, on arrive à exprimer l’aire comme une série en 1/g où g est le genre. De façon surprenante, les coefficients de cette série s’expriment en fonction de la fonction zeta de Riemann et de multi-zetas. J’expliquerai aussi comment estimer le rayon de convergence de cette série. Travail en collaboration avec Lynn Heller, Sebastian Heller et Steven Charlton.
Séminaire Commun de Géométrie - Dualité structures complexes-hyperboliques et projectives réelles
5 juin 2023 14:00-16:00 -Oratrice ou orateur : Andrès Sambarino
Résumé :
Titre à venir
22 mai 2023 15:30-16:30 -Oratrice ou orateur : Yann Chaubet
Résumé :
Séminaire Commun de Géométrie - équidistribution d'intersections typiques avec des sous-variétés localement homogènes
15 mai 2023 14:00-16:00 -Oratrice ou orateur : Nicolas Tholozan
Résumé :
Vacances - pas de séminaire
24 avril 2023 00:00-00:00 -Oratrice ou orateur :
Résumé :
Vacances - pas de séminaire
17 avril 2023 00:00-00:00 -Oratrice ou orateur :
Résumé :
Séminaire Commun de Géométrie - Géométrie des surfaces plates de grand genre
3 avril 2023 14:00-16:00 -Oratrice ou orateur : Elise Goujard
Résumé :
Dans cet exposé on s’intéressera aux surfaces de demi-translation et plus particulièrement aux surfaces à petits carreaux de demi-translation. Après avoir rappelé quelques résultats sur la répartition de ces surfaces dans les espaces de modules de surfaces plates, j’exposerai des résultats récents et des conjectures sur la géométrie et la combinatoire de ces surfaces en grand genre.
Dans le cas générique (strates principales des espaces de modules), ces résultats sont dus à un travail en collaboration avec V. Delecroix, P.Zograf and A. Zorich, et s’interprètent également en terme de mutlicourbes fermées sur les surfaces. J’expliquerai également ce que l’on sait faire dans le cas des strates impaires et les conjectures correspondantes (travail en commun avec E. Duryev et I. Yakovlev).
Semi-continuité supérieure de l’indice de Morse des immersions de Willmore
27 mars 2023 15:30-16:30 - Salle de conférences NancyOratrice ou orateur : Alexis Michelat
Résumé :
L’indice de Morse d’un point critique d’un lagrangien L est la dimension de l’espace vectoriel
maximal sur lequel la dérivée seconde D^2 L s’annule. Dans la théorie classique des variétés de Hilbert, on montre que l’indice de Morse est semi-continu inférieurement, tandis que la somme de l’indice
de Morse et de la nullité (la dimension du noyau de l’opérateur différentiel associé à la dérivée seconde) est semi-continu supérieurement.
Dans un article récent (arXiv:2212.03124) de Francesca Da Lio, Matilde Gianoca, et Tristan
Rivière, une nouvelle méthode d’estimation de l’indice de Morse est développée dans le cas des
lagrangiens invariants conformes (ce qui inclut les applications harmoniques) en dimension 2. La
preuve repose sur une analyse délicate du comportement de la dérivée seconde dans les régions des
« cous » — qui lient la surface macroscropique à ses « bulles » — ainsi qu’une estimée ponctuelle de
la solution dans ces régions.
Dans cet exposé, nous montrerons comment généraliser cette méthode à l’énergie de Willmore, un
lagrangien invariant conforme associé aux immersions d’une surface de l’espace Euclidien. Les points
critiques de l’énergie de Willmore vérifiant une équation elliptique non-linéaire d’ordre 4, certaines
étapes feront apparaître de redoutables nouvelles difficultés techniques.
Si le temps le permet, nous essaierons de montrer le caractère universel de cette méthode, qui
laisse entrevoir de nombreuses extensions possibles : fonctionnelles de type Ginzburg-Landau en dimension 2, applications bi-harmoniques en dimension 4, fonctionnelle de Yang-Mills en dimension 4,
et généralisation de ces méthodes aux problèmes de min-max.
Travail en collaboration avec Tristan Rivière (ETH Zürich).
Mélange exponentiel du flot de repère sur les variétés hyperbolique géométriquement fini
13 mars 2023 14:00-15:00 -Oratrice ou orateur : Jialun Li
Résumé :
Soit X une variété hyperbolique géométriquement fini, c-a-d, une variété hyperbolique avec un domaine fondamental de polyédrale fini. Il existe une mesure unique sur la fibre tangent unitaire invariante par le flot géodésique d’entropie maximal, et on considère son relevé dans le fibré des repères. Dans un travail commun avec Pratyush Sarkar et Wenyu Pan, on a démontré que le flot de repère est exponentiellement mélangeant par rapport à cette mesure. Pour établir le mélange exponentiel, on utilise un codage dénombrable de flot et une version de la méthode de Dolgopyat, à la Sarkar-Winter et Tsujii-Zhang. Pour surmonter les difficultés de la structure fractale, on a besoin de grand déviation pour la récurrence symbolique dans les grands ensembles.
Séminaire Commun de Géométrie - Hyperbolicité en présence d'un grand système local
6 mars 2023 14:00-16:00 -Oratrice ou orateur : Yohan Brunebarbe
Résumé :
Hyperbolicité en présence d’un grand système local
Serge Lang a proposé plusieurs conjectures influentes reliant différentes notions d’hyperbolicité pour les variétés algébriques complexes projectives. Par exemple, il a conjecturé que le lieu balayé par les courbes entières coïncide avec le lieu balayé par les sous-variétés qui ne sont pas de type général, du moins après avoir pris les fermetures de Zariski. J’expliquerai que certaines de ces conjectures (dont celle ci-dessus) sont vraies pour les variétés qui admettent un grand système local complexe au sens de Campana et Kollár (par exemple toute variété qui possède une variation de structures de Hodge mixtes dont l’application des périodes est finie).
Vacances - pas de séminaire
20 février 2023 00:00-00:00 -Oratrice ou orateur :
Résumé :
Une inégalité pour la norme l_1 des variétés complètes (An l_1-norm inequality for complete manifolds) (en visio)
13 février 2023 15:30-16:30 -Oratrice ou orateur : Caterina Campagnolo
Résumé :
Abstract : In the 80’s, Gromov introduced a new topological invariant, the simplicial volume of a manifold. He showed its deep connection with geometry by proving his « Main inequality », relating the simplicial volume to the volume of the manifold under some curvature assumptions.
Séminaire Commun de Géométrie - l'espace des métriques kählériennes
6 février 2023 14:00-16:00 -Oratrice ou orateur : Eleonora Di Nezza
Résumé :
L’espace des métriques kähleriennes.
Un problème classique en géométrie kählerienne est de trouver des métriques kähleriennes spéciales, cet à dire avec des bonnes propriétés de courbure. En relation avec ce problème, l’étude de l’espace des métriques kähleriennes, que l’on denote H, devient cruciale.
Cet espace à été étudié à partir des année 80 quand Mabuchi a introduit un produit scalaire sur chaque espace tangent. À partir de cela, une famille de distances d_p, p>=1, on été définie sur H en démontrant que (H, d_p) est une espace métriques mais pas complet.
Dans la première partie cette exposé on donnera un panorama de tout ce que on sait sur cet espace. Puis parlera plus en détail de ses géodésiques, son complété métrique et des distances d_p.
Les résultats présentés dans cette exposé sont basés sur des deux travaux, un en collaboration avec Vincent Guedj et l’autre en collaboration avec Chinh Lu.
Ligne d'étirement de Thurston pour surfaces à bord
30 janvier 2023 15:30-16:30 - Salle de conférences NancyOratrice ou orateur : Valentina Disarlo
Résumé :
En 1986 William Thurston a introduit une distance Lipschitz sur
l’espace de Teichmueller de surfaces fermées ou avec cusps. Avec Daniele
Alessandrini on a étendu cette théorie à l’espace de Teichmueller des
surfaces à bord géodésique. On construit une famille de géodésiques pour
l’espace de Teichmueller des surface à bord, qui généralisent les lignes
d’étirement construites par Thurston. Comme corollaire, on trouve une
nouvelle classe de géodésique dans l’espace de Teichmueller des surfaces
fermées avec la distance Lipschitz. Ce travail est en collaboration avec
Daniele Alessandrini (Columbia University).
Fonctions zêta dynamiques et torsion de Reidemeister
23 janvier 2023 15:30-16:30 - Salle de conférences NancyOratrice ou orateur : Léo Bénard
Résumé :