Exposés à venir
Exposés passés
Séminaire commun de Géométrie - Problèmes extrémaux en géométrie hyperbolique
4 avril 2022 14:00-16:00 -Oratrice ou orateur : Bram Petri
Résumé :
Je parlerai d’un projet en commun avec Maxime Fortier Bourque sur des problèmes extrémaux en géométrie hyperbolique. Les problèmes qui nous intéressent sont des analogues hyperboliques de problèmes classiques en géométrie euclidienne, comme le problème de la densité maximale des empilements de sphères et le problème du nombre de contact. L’objectif de l’exposé sera d’expliquer comment on peut utiliser la formule de trace de Selberg – une formule qui relie les longueurs des géodésiques sur une variété hyperbolique au spectre du Laplacien de cette variété – pour attaquer ces problèmes.
%%%%%%%%%%%%%%%%%%%%%%
Comme chaque « séminaire commun de géométrie », une première partie de 14h à 14h45 sera un exposé d’introduction au sujet de type colloquium, suivi d’une pause thé-gateaux de 14h45 à 15h15 et de la suite de l’exposé de 15h15 à 16h.
Construction de représentations milnoriennes
28 mars 2022 15:30-16:30 -Oratrice ou orateur : Ilia Smilga
Résumé :
En 1977, Milnor a formulé la conjecture suivante : tout groupe discret de transformations affines agissant proprement sur l’espace affine est virtuellement résoluble. On sait maintenant que cet énoncé est faux ; l’objectif est à présent de mieux cerner les contre-exemples à cette conjecture. Il y a deux ans, j’ai présenté au séminaire de Géométrie Différentielle une méthode permettant de construire un très grand nombre de tels contre-exemples.
Cette fois-ci, d’une part, je vais au contraire me concentrer sur les cas particuliers dans lesquelles la conjecture de Milnor est vérifiée. Je vais expliquer dans quels cas je sais la démontrer, et quels sont les obstacles à surmonter pour couvrir les cas restants.
Je vais également évoquer les possibles critères de propreté de l’action d’un groupe discret affine fixé.
Comptage et équidistribution de tores plats
14 mars 2022 15:30-16:30 -Oratrice ou orateur : Thi Dang Nguyen
Résumé :
On se place dans l’espace des chambres de Weyl d’un espace symétrique de rang supérieur, ce qui correspond dans le cas d’une surface hyperbolique à son fibré unitaire tangent. Dans le cas compact ainsi que pour les orbivariétés qui sont des revêtements finis de SL(d,ZZ)\SL(d,IR), l’espace des chambres de Weyl contient des tores plats. Cela correspond, dans le cas des surfaces
hyperboliques aux orbites fermées du flot géodésique. Je vais vous présenter un résultat d’équidistribution et de comptage de ces tores plats périodiques, obtenus en collaboration avec Jialun Li.
Limites de Gromov-Hausdorff de variétés avec bornes sur la courbure de Ricci
7 mars 2022 14:00-16:00 -Oratrice ou orateur : Ilaria Mondello
Résumé :
L’étude des limites de Gromov-Hausdorff de variétés à courbure de Ricci minorée a débuté en 1981 avec un théorème de pré-compacité de Gromov : depuis, une vaste théorie de la régularité a été développée grâce aux travaux de J. Cheeger, T.H. Colding, M. Anderson, G. Tian, A. Naber, W. Jiang. Néanmoins, dans de nombreuses situations, on ne dispose pas d’une minoration uniforme sur la courbure de Ricci. Il est donc important d’étudier des suites de variétés avec une hypothèse plus faible sur la courbure. Dans la première partie de cet exposé, je présenterai le contexte de la convergence de Gromov-Hausdorff et les principaux résultats connus dans le cas de courbure de Ricci minorée. J’introduirai ensuite une condition moins restrictive, la borne de Kato, et les résultats de régularité que nous avons obtenus dans un travail en collaboration avec G. Carron et D. Tewodrose. La deuxième partie de l’exposé sera dédiée aux nouvelles quantités monotones que nous avons introduites et au rôle fondamental qu’elles jouent dans nos preuves.
Équidistributions en géométrie de Hilbert
28 février 2022 15:30-16:30 -Oratrice ou orateur : Pierre Louis Blayac
Résumé :
Il est bien connu depuis la thèse de Margulis que les propriétés de mélange du flot géodésique des variétés riemanniennes fermées à courbure négative peuvent être utilisées pour obtenir divers résultats d’équidistribution : équidistribution des géodésiques fermées, ou encore équidistribution des orbites du groupe fondamental dans le revêtement universel. À l’aide des densités dites de Patterson-Sullivan, les idées de Margulis ont pu être appliquées à des contextes géométriques plus généraux ; par exemple par Roblin qui étudia des espaces localement CAT(-1) non compacts.
Dans cet exposé, nous discuterons de ces questions de mélange et équidistribution dans un autre contexte géométrique : celui des variétés projectives convexes, autrement dit des quotients d’ouverts proprement convexes d’un espace projectif réel. Ces variétés apparaissent naturellement lors de l’étude de certains sous-groupes discrets des groupes de Lie. Leurs droites projectives sont des géodésiques pour une certaine métrique finslérienne, dite de Hilbert (qui n’est en général pas CAT(0)), et on leur associe naturellement un flot géodésique. Les résultats qui seront présentés sont issus d’une collaboration avec Feng Zhu.
Vacances
14 février 2022 15:30-16:30 -Oratrice ou orateur :
Résumé :
16:
Involutions du plan - Séminaire commun de Géométrie
7 février 2022 14:00-16:00 -Oratrice ou orateur : Susanna Zimmermann
Résumé :
Il est naturel de regarder des transformations birationnelles du plan, càd des isomorphismes des ouverts de Zariski du plan. Il y en a beaucoup qui sont des involutions et on peut se mettre à les classifier à conjugaison près. Sur le corps des nombres complexes une telle involution possède des courbes fixes rationnelles ou bien une unique courbe fixe irrationnelle. Dans ce dernier cas, les classes de conjugaison des involutions sont à bijection avec les classes d’isomorphismes des courbes fixes. Pas surprenant, ce n’est plus le cas sur le corps des nombres réels…
Je vais motiver la classification dans le cas complexe et ensuite je vais raconter ce qui est connu dans le cas réel.
Comme tous les « séminaires communs de géométrie », nous aurons de 14h à 14h45 une introduction au sujet de niveau Colloquium, puis de 14h45 à 15h15 une pause thé-gateaux-géométrie, puis de 15h15 à 16h la suite de l’exposé de recherche.
Analyse géométrique sur le spectre de Wentzel
31 janvier 2022 15:30-16:30 - Salle de conférences NancyOratrice ou orateur : Aïssatou Ndiaye
Résumé :
Le problème de Wentzel est un problème spectral avec les valeurs propres dans les conditions au bord. En effet, il s’agit en quelque sorte d’une perturbation du problème de Steklov, plus connu, dont le spectre correspond à celui de l’opérateur Dirichlet-to-Neumann et qui est un cas particulier correspondant à la valeur zéro du paramètre de perturbation dans le problème de Wentzel.
Bien que le problème de Wentzel partage certaines propriétés communes avec et le problème de Steklov et le problème fermé sur les hypersurfaces, ses valeurs propres et fonctions propres ont un certain nombre de caractéristiques géométriques distinctives dûes au paramètre de perturbation, rendant le sujet particulièrement attrayant.
Dans cette présentation, nous discuterons des avancées récentes sur l’estimation des valeurs propres par rapport aux invariants géométriques du domaine considéré, tels que la courbure, le rapport isopérimétrique ou encore la concentration volumique du bord. Nous donnerons des Bornes sup ́erieures uniformes explicites, obtenues grâce à des méthodes de décomposition métrique sur la variété Riemannienne ambiante. Ceci permet d’établir des estimations optimales selon la loi asymptotique de Weyl.
Plongement C^1-isométrique du plan hyperbolique
24 janvier 2022 15:30-16:30 -Oratrice ou orateur : Mélanie Theillière
Résumé :
Dans cet exposé, nous construirons un plongement f d'un disque fermé dans R^3 dont la restriction à l'intérieur du disque est un plongement C^1 isométrique du disque de Poincaré et qui est, sur le disque fermé, beta-Hölder pour tout 0< beta <1. En particulier, ce plongement a une courbe fermée plongée de dimension de Hausdorff 1 comme ensemble limite.
Paracausal deformations of Lorentzian metrics and their consequences in quantum field theory
17 janvier 2022 03:30-04:30 -Oratrice ou orateur : Simone Murro
Résumé :
It is well-known that the space of Riemannian metrics on a smooth manifold is path-connected. Indeed, the convex combination of Riemannian metrics produces a Riemannian metric. This is not true, for the space of Lorentzian metric and a natural question pop up: Are there some natural operations that can be used to produce Lorentzian metrics starting from Lorentzian metrics?
This talk aims to provide sufficient conditions for some kind of linear combination of Lorentzian metrics to be a Lorentzian metric. In particular, the notion of paracausal deformation of a Lorentzian metric will be introduced and discussed in detail. After few characterizations, I will discuss shortly the consequences in quantum field theory.
Exposé en visio-conférence, retransmis en direct en salle de conférence de l’IECL Nancy. Lien public
https://webvisio.univ-lorraine.fr/index.html?id=5147&secret=84a837ee-c66c-4d9b-bd75-6f0d540a8c34
Une inégalité de Cheeger pour les 1-formes
10 janvier 2022 15:30-16:30 -Oratrice ou orateur : Adrien Boulanger
Résumé :
Séminaire commun de Géométrie
3 janvier 2022 14:00-16:00 -Oratrice ou orateur : Laura Monk
Résumé :
Petites 2-sphères et courbure scalaire positive - exceptionnellement en salle 313
13 décembre 2021 15:30-16:30 -Oratrice ou orateur : Thomas Richard
Résumé :
Résumé : l’étude des variétés à courbure scalaire positive a longtemps uniquement montré des restrictions de nature topologique sur ces dernières. Ces dernières années des résultats de nature plus quantitative ont été montrés d’abord par Gromov, puis (entre autres) par Zhu. Zhu en particulier montre que qu’une métrique à scal≥2 sur S²xT^(n-2) (avec n≤7) admet une 2-sphère topologiquement non triviale d’aire au plus 4π. Après avoir exposé ces résultats on en montrera des analogues pour S²xS² et S²xR².
Séminaire commun de Géométrie - Endoscopy and geometry
6 décembre 2021 14:00-16:00 -Oratrice ou orateur : Roma Bezrukavnikov
Résumé :
Irreducible characters form an interesting basis in the space of of class functions (i.e. functions constant on conjugacy classes) on a finite group G, the goal of harmonic analysis and representation theory is to study properties and applications of that basis.
If G is a reductive p-adic group, such as the group of invertible matrices with p-adic entries, then irreducible characters are known to behave in a regular way not only on conjugacy classes (on which they are constant) but also on the so called stable conjugacy classes, i.e. the set of elements conjugate over the algebraic closure of the base field (for example, two sheets of a hyperboloid in R^3 are two SL(3,R) orbits inside a single stable orbit). This is studied in the theory of endoscopy in harmonic analysis on p-adic group.
I will give an overview of a long term joint project with Kazhdan and Varshavsky aimed at applying algebraic geometry, including l-adic sheaves, to problems in that theory.
%%%%%%%%%%%%%
Comme tous les Séminaires Communs de Géométrie, cet exposé sera en deux parties : une première partie « colloquium » de 14h à 14h45, puis une partie plus avancée de 15h15 à 16h. Une pause thé-gateaux-géométrie vous est proposée entre les deux exposés.
Sur l'ergodicité du flot des repères des variétés à courbure négative
22 novembre 2021 15:30-16:30 -Oratrice ou orateur : Thibault Lefeuvre
Résumé :
Le flot des repères des variétés à courbure sectionnelle négative est l’un des premiers exemples historiques de dynamique partiellement hyperbolique. Il est connu que ce flot est ergodique sur les variétés hyperboliques, et les variétés de dimension impaire non égale à 7 ; à l’inverse, ce flot n’est pas ergodique sur les variétés kähleriennes (e.g. variétés hyperboliques complexes). Brin a donc naturellement conjecturé dans les années 70 que les variétés paires à courbure 1/4-pincées devaient avoir un flot des repères ergodiques mais cette question est encore aujourd’hui très largement ouverte. Dans cet exposé, j’expliquerai de récents progrès obtenus sur cette conjecture : je montrerai que les variétés de dimension 4k+2 (resp. 4k) et ~0.27-pincées (resp. ~0.55) ont un flot des repères ergodique. Cette nouvelle approche combine essentiellement trois outils : 1) des outils de dynamique hyperbolique (groupe de transitivité, représentation du monoïde de Parry), 2) la topologie des groupes de structure sur les sphères, 3) de l’analyse harmonique sur le fibré unitaire tangent (identités de Pestov et/ou de Weitzenböck tordues). Travail en commun avec Mihajlo Cekić, Andrei Moroianu, Uwe Semmelmann.
À la recherche de tores plats, une approche diploïde - Séminaire Commun de Géométrie
15 novembre 2021 14:00-16:00 -Oratrice ou orateur : Alba Malaga
Résumé :
On peut obtenir un tore en recollant abstraitement les deux paires de côtés opposés d’un carré, sans le déformer. Un tel tore vient alors naturellement fourni d’une métrique à courbure constante nulle, c’est pourquoi on l’appelle tore plat carré. Cette construction se généralise en prenant n’importe quel parallélogramme à la place du carré. Modulo une relation d’équivalence, tous les tores plats vivent alors sur la courbe modulaire.
Dans cet exposé, je présenterai une construction assez simple qui permet d’obtenir tous les tores de la courbe modulaire comme des polyèdres et j’esquisserai une demonstration de ce fait. Je présenterai aussi des variations de la construction qui permettent d’obtenir des exemples de réalisations polyédrales de surfaces de translation.Ceci est un travail en collaboration avec Samuel Lelièvre (Orsay) et Pierre Arnoux (Marseille).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Comme tous les « Séminaires communs de géométrie », ce séminaire comprend deux séances : de 14h à 15h45, un exposé « colloquium » s’adressant à tous les mathématiciens, puis de 15h15 à 16h un exposé « recherche » qui approfondira ce qui aura été présenté au premier exposé.
Vacances
25 octobre 2021 15:30-15:30 -Oratrice ou orateur :
Résumé :
REPORTE à une date ultérieure
11 octobre 2021 15:30-16:30 - Salle de conférences NancyOratrice ou orateur : Simone Murro
Résumé :
Paracausal deformations of Lorentzian metrics and their consequences in quantum field theory
It is well-known that the space of Riemannian metrics on a smooth manifold is path-connected. Indeed, the convex combination of Riemannian metrics produces a Riemannian metric. This is not true, for the space of Lorentzian metric and a natural question pop up: Are there some natural operations that can be used to produce Lorentzian metrics starting from Lorentzian metrics?
This talk aims to provide sufficient conditions for some kind of linear combination of Lorentzian metrics to be a Lorentzian metric. In particular, the notion of paracausal deformation of a Lorentzian metric will be introduced and discussed in detail. After few characterizations, I will discuss shortly the consequences in quantum field theory.
Les surfaces de Ricci à courbure non-positive avec des bouts caténoïdaux
28 juin 2021 14:00-15:00 -Oratrice ou orateur : Yiming Zang
Résumé :
Les surfaces de Ricci sont les surfaces dont la métrique satisfait la condition KΔK + g(dK,dK) +4K^3=0. Ces surfaces sont premièrement étudiées par A. Moroianu et S. Moroianu. Ils ont démontré que les surfaces de Ricci permettent localement des immersions minimales dans R^3. On va donner quelques résultats de classification des surfaces de Ricci avec des bouts caténoïdaux en utilisant une analogue de la représentation de Weierstrass.
Dominant energy condition and Dirac-Witten operators
21 juin 2021 14:00-15:00 -Oratrice ou orateur : Jonathan Glöckle
Résumé :
Energy conditions are a major ingredient for the famous singularity theorems of General Relativity. In this talk we want to study one of them from the perspective of initial data sets: An embedded spacelike hypersurface of a Lorentzian manifold carries an induced Riemannian metric $g$ and a second fundamental form $k$. The dominant energy condition implies that the pairs $(g, k)$ arising in this way satisfy a certain inequality that generalizes the condition of non-negative scalar curvature of $g$ in the case $k = 0$. As for non-negative (or positive) scalar curvature, index theoretic methods can be used to study the (strict) dominant energy condition for initial data sets. In this context Dirac-Witten operators serve as the appropriate replacement for Dirac operators.