Exposés à venir
Exposés passés
Espaces métriques injectifs, espaces symétriques et immeubles
12 avril 2021 14:00-15:00 - Salle de géométrie virtuelleOratrice ou orateur : Thomas Haettel
Résumé :
Nous allons nous intéresser aux espaces métriques injectifs, où toute famille de boules s’intersectant deux à deux s’intersecte globalement, ainsi qu’à leur contrepartie discrète que sont les graphes de Helly. L’étude des actions de groupes sur de tels espaces permet d’en déduire de nombreuses propriétés typiques de la courbure négative. Nous montrerons que les espaces symétriques classiques peuvent être munis d’une métrique injective, tandis que les immeubles de Bruhat-Tits classiques peuvent être munis d’une structure de graphe de Helly.
Quelques propriétés du groupe de Cremona
29 mars 2021 14:00-15:00 -Oratrice ou orateur : Julie Déserti
Résumé :
Après avoir introduit le groupe de Cremona j’expliquerai comment on peut étudier ses sous-groupes résolubles et les plongements du groupe de Heisenberg dans celui-ci.
Topologie des sous-variétés lagrangiennes et génération de la catégorie de Fukaya d'une variété de Weinstein
22 mars 2021 14:00-15:00 - Salle de géométrie virtuelleOratrice ou orateur : Baptiste Chantraine
Résumé :
Les catégories de Fukaya sont des catégories A_infini dont les objets sont les sous-variétés lagrangiennes d’une variété symplectique ; trouver un système générateur pour celles-ci permet d’extraire de l’information fine sur la topologie de ces sous-variétés lagrangiennes. Dans cet exposé j’introduirai les notions de base du sujet (sous-variétés lagrangiennes, catégories A-infini, systèmes générateurs …) dans le cadre des variétés de Weinstein (qui contient le cas des fibrés cotangents). Je décrirai ensuite un système de générateurs dans ce contexte et expliquerai comment celui-ci peut-être utilisé pour permettre des calculs explicites d’invariants des sous-variétés lagrangiennes afin d’étudier leur topologie. C’est une combinaison de divers travaux dont certains en collaboration avec G. Dimitroglou-Rizell, P. Ghiggini et R. Golovko.
Quelques résultats sur l’indice des surfaces minimales à bord libre dans la boule unité
8 mars 2021 14:00-15:00 - Salle de géométrie virtuelleOratrice ou orateur : Baptiste Devyver (Grenoble)
Résumé :
Des travaux de A. Fraser et R. Schoen ont récemment relancé l’intérêt pour les surfaces minimales à bord libre. De nombreux exemples de surfaces minimales à bord libre dans la boule unité ont notamment été construits. De telle surfaces ne sont jamais des minimums de la fonctionnelle d’aire, et on quantifie combien elles sont loin d’être des minimums à l’aide d’un nombre entier, l’indice de Morse. Dans cet exposé, je présenterai des résultats concernant l’indice de Morse des surfaces minimales à bord libre dans la boule unité ; une question ouverte est notamment de classifier de telles surfaces de petit indice.
Prescription de la courbure de Gauss pour les corps convexes dans les espaces hyperboliques
15 février 2021 14:00-15:00 - Salle de géométrie virtuelleOratrice ou orateur : Jérôme Bertrand
Résumé :
The Gauss curvature measure of a pointed Euclidean convex body is a measure on the unit sphere which extends the notion of Gauss curvature to non-smooth bodies. Alexandrov’s problem consists in finding a convex body with given curvature measure. In Euclidean space, A.D. Alexandrov gave a necessary and sufficient condition on the measure for this problem to have a solution.
In this paper, we address Alexandrov’s problem for convex bodies in the hyperbolic space $\mathbf{H}^{m+1}$ . After defining the Gauss curvature measure of an arbitrary hyperbolic convex body, we completely solve Alexandrov’s problem in this setting. Contrary to the Euclidean case, we also prove the uniqueness of such a convex body. The methods for proving existence and uniqueness of the solution to this problem are both new.
Une entropie relative pour les solutions auto-similaires expansives du flot de Ricci
8 février 2021 14:00-14:00 - Salle de conférences NancyOratrice ou orateur :
Résumé :
En collaboration avec Felix Schulze (Warwick University)
Les solutions auto-similaires expansives du flot de Ricci sont des solutions n’évoluant que par homothéties et difféomorphismes. De telles solutions sont aussi appelées solitons (gradients) expansifs de Ricci. Ces métriques sont de bons candidats pour lisser instantanément des singularités métriques (isolées) éventuellement kahlériennes. Nous traitons ici la question de l’unicité de telles solutions ayant pour condition initiale un cône métrique fixé. Comme première étape, nous développons une fonctionnelle de Lyapunov appelée entropie relative dans ce contexte.
Une entropie relative pour les solutions auto-similaires expansives du flot de Ricci
8 février 2021 14:00-15:00 -Oratrice ou orateur : Alix Deruelle
Résumé :
En collaboration avec Felix Schulze (Warwick University)
Les solutions auto-similaires expansives du flot de Ricci sont des solutions n’évoluant que par homothéties et difféomorphismes. De telles solutions sont aussi appelées solitons (gradients) expansifs de Ricci. Ces métriques sont de bons candidats pour lisser instantanément des singularités métriques (isolées) éventuellement kahlériennes. Nous traitons ici la question de l’unicité de telles solutions ayant pour condition initiale un cône métrique fixé. Comme première étape, nous développons une fonctionnelle de Lyapunov appelée entropie relative dans ce contexte.
Entropie à l'infini et applications en courbure négative
25 janvier 2021 14:00-15:00 -Oratrice ou orateur : Samuel Tapie
Résumé :
Dans cet exposé, je présenterai des travaux récents sur le flot géodésique des variétés non-compactes à courbure négative, dont la plupart sont en collaboration avec B. Schapira et S. Gouà«zel. Je commencerai par rappeler le contexte géométrique et certains de ses liens avec la théorie géométrique des groupes et l’analyse sur les variétés. Puis je présenterai diverses visions classiques de l’entropie du flot géodésique en courbure négative, à partir desquelles j’introduirai la notion d’entropie à l’infini.
On dit qu’une variété présente un « trou critique » si l’entropie totale est strictement plus grande que l’entropie à l’infini. J’expliquerai enfin pourquoi ce concept de trou critique semble central pour l’étude des dynamiques non-compactes, et je présenterai divers résultats que nous avons obtenu à ce sujet et quelques travaux en cours.
Livres brisés et dynamique des flots de Reeb en dimension 3
30 novembre 2020 14:00-15:00 -Oratrice ou orateur : Ana Rechtman
Résumé :
Les flots de Reeb sont une famille spéciale de flots qui préservent le volume dont la dynamique, en dimension 3, a été beaucoup étudie les derniers 30 ans. Nous savons par exemple que tout champs de Reeb a au moins deux orbites périodiques et que certains d’entre eux admettent des sections de Birkhoff. Si on considère un champ de vecteurs qui admet une section de Birkhoff dont le bord est un entrelac L, alors la variété ambiante privée de L fibre sur le cercle. Les fibres définissent un livre ouvert de la variété. Nous disons que le champ de vecteurs est porté par le livre ouvert.
Nous avons montré que tout champ de Reeb non-dégénéré est porté par un livre brisé (une généralisation de la notion de livre ouvert). Grâce à cette construction, nous avons étudié certains aspects de la dynamique des flots de Reeb : nous établissons par exemple, qu’un champ de Reeb non-dégénéré a deux ou une infinité d’orbites périodiques ; et que tout champ de Reeb non-dégénéré sur une variété non-graphée est d’entropie topologique positive. Ceci est un travail en collaboration avec Vincent Colin et Pierre Dehornoy.
Bubbling phenomena for Willmore surfaces
4 novembre 2019 14:00-15:00 -Oratrice ou orateur : Nicolas Marque
Résumé :
The Willmore energy arises naturally as a measure of how curved an immersed surface in $mathbb{R}^3$ is, with applications in relativity (the Hawking mass). Willmore immersions are critical points of this energy. We will study sequences of Willmore surfaces, which are subject to concentration-compactness i.e. : bubbling phenomena. We will focus on simple minimal bubbles, and detail consequences on the compactness below certain thresholds.
Group invariant solutions of certain partial differential equations
7 octobre 2019 14:00-15:00 -Oratrice ou orateur : Jaime Ripoll
Résumé :
This talk is about a joint work, still in progress, with Friedrich Tomi (Heidelberg University, Germany) where one investigates the existence of solutions which are invariant by a Lie subgroup of the isometry group of a Riemannian manifold $M$; acting freely and properly on $M$, to the Dirichlet problem of a certain class of partial differential equations on $M$: Typical examples of this class are the $p$-Laplacian PDE and the minimal surface equation. This approach may reduce the study of the Dirichlet problem in unbounded to bounded domains and also allows to prove the existence of solutions on domains which are not necessarily mean convex in the case of the minimal surface equation for certain boundary data.
Unknottedness of minimal surfaces and Ricci curvature
9 septembre 2019 14:00-15:00 -Oratrice ou orateur : Jaigyoung Choe
Résumé :
It is known that minimal surfaces are unknotted in 3-sphere. We will see how this fact can be generalized.
Géométrie des représentations maximales en rang 2
24 juin 2019 14:00-15:00 -Oratrice ou orateur : Jérémy Toulisse
Résumé :
La notion de représentation maximale du groupe fondamental d’une surface dans un groupe de Lie hermitien généralise naturellement la notion de représentation fuchsienne dans $PSL(2,mathbb{R})$. Dans cet exposé, j’expliquerai comment construire une unique surface maximale dans l’espace pseudo hyperbolique $mathbb{H}^{2,n}$ qui est préservée par l’action d’une représentation maximale dans un groupe de Lie de rang 2. Comme conséquence, nous prouvons une conjecture de Labourie pour les représentations maximales en rang 2. Il s’agit d’un travail en commun avec Brian Collier et Nicolas Tholozan.
Autour de l'observabilité pour l'équation des ondes
20 mai 2019 14:00-15:00 -Oratrice ou orateur : Emmanuel Humbert
Résumé :
J’expliquerai comment un principe de compacité-concentration permet de montrer divers résultats, nouveaux ou déjà connus, concernant la constante d’observabilité de l’équation des ondes, puis en application, des résultats sur les mesures quantiques d’une variété riemannienne compacte. Il s’agit de travaux en collaboration avec Y. Privat et E. Trélat.
Surfaces à courbure moyenne constante dans $mathbb{S}^2timesmathbb{R}$ et $mathbb{H}^2timesmathbb{R}$
29 avril 2019 14:00-15:00 -Oratrice ou orateur : Iury Domingos
Résumé :
Dans cet exposé, on établira des conditions nécessaires et suffisantes pour qu’une 2-variété riemannienne soit isométriquement immergée comme surface à courbure moyenne constante dans certaines variétés produits. De plus, dans le cas o๠la 2-variéte riemannienne a une courbure intrinsèque constante, on classifiera ces immersions isométriques. Il s’agit d’un travail en cours en collaboration avec Benoît Daniel (UL) et Feliciano Vità³rio (UFAL).
On non-compact quasi-Einstein manifolds
1 avril 2019 14:00-15:00 -Oratrice ou orateur : Marcos Ranieri
Résumé :
In this talk, we will show some results about quasi-Einstein manifolds. Quasi-Einstein manifolds can be characterized as bases of Einstein warped products. On the first part, we investigated the infinity structure of a complete non-compact quasi-Einstein manifolds. In particular, we show that if M is a base of a Ricci-flat warped product then M is connected at infinity. When M is the basis of an Einstein warped product with Einstein constant λ < 0, there are examples with more than one end. In this case, we show that M is non-parabolic and, on a given hypothesis about scalar curvature, M has only one end f-non-parabolic. In addition, we obtain two estimates for the volume of the geodesic balls of M. On the second part, we will show that Bach-flat non-compact quasi-Einstein manifolds with λ = 0 and positive Ricci curvature are isometric to a rotationally symmetric metric whose fiber is a Einstein manifold.
This is joint work with R. Batista and E. Ribeiro Jr.
Régularité de l'entropie en courbure négative
25 mars 2019 13:45-14:45 -Oratrice ou orateur : Barbara Schapira
Résumé :
Si l’on fait une variation $C^1$ d’une métrique à courbure négative sur une variété compacte, alors l’entropie du flot géodésique (invariant dynamique naturel) varie de manière $C^1$. Ce résultat est dà» à Katok-Knieper-Weiss. Dans un travail en commun avec Samuel Tapie, nous montrons que ce résultat est valide pour une large classe de variétés non compactes à courbure négative. J’introduirai les notions intervenant dans ce résumé, et quelques idées des preuves.
Géométrie hyperbolique des formes des corps convexes (avec C. Debin)
28 janvier 2019 14:00-15:00 -Oratrice ou orateur : François Fillastre
Résumé :
On introduit une distance sur l’ensemble des corps convexes de l’espace euclidien de dimension n, à translations et homothéties près. Cet ensemble se plonge isométriquement comme un convexe de l’espace hyperbolique de dimension infinie. La structure lorentzienne ambiante est donnée par une extension de l’aire intrinsèque des corps convexes. On en déduit que l’ensemble des formes des corps convexes (c’est-à -dire les corps convexes à similitudes près) est muni d’une distance propre de courbure plus grande que -1. Pour les convexes en dimension 3, cet espace est homéomorphe à l’espace des métriques sur la sphère de courbure positive.
Fonctions de type hyperbolique
19 novembre 2018 14:00-15:00 -Oratrice ou orateur : Pierre Py
Résumé :
Par analogie avec les fonctions de type positif et les fonctions conditionnellement de type négatif, classiques en théorie des représentations des groupes, nous étudions les fonctions de type hyperbolique. Nous donnons des exemples de telles fonctions et quelques applications. Il s’agit d’un travail en commun avec Nicolas Monod ( https://arxiv.org/abs/1805.12479 ).
Lower bounds for the stability index of constant mean curvature surfaces
12 novembre 2018 14:00-15:00 -Oratrice ou orateur : Marcos Petràºcio Cavalcante
Résumé :
We prove that the stability index of a compact constant mean curvature (CMC) surface in the Euclidean space or in the unit sphere is bounded from below by a linear function of its genus. We also will discuss some results in the case of free-boundary CMC surfaces in a mean convex body of R^3. These results are part of joint works with Darlan de Oliveira.