Exposés à venir
Exposés passés
Séminaire Commun de Géométrie - Hyperbolicité en présence d'un grand système local
6 mars 2023 14:00-16:00 -Oratrice ou orateur : Yohan Brunebarbe
Résumé :
Hyperbolicité en présence d’un grand système local
Serge Lang a proposé plusieurs conjectures influentes reliant différentes notions d’hyperbolicité pour les variétés algébriques complexes projectives. Par exemple, il a conjecturé que le lieu balayé par les courbes entières coïncide avec le lieu balayé par les sous-variétés qui ne sont pas de type général, du moins après avoir pris les fermetures de Zariski. J’expliquerai que certaines de ces conjectures (dont celle ci-dessus) sont vraies pour les variétés qui admettent un grand système local complexe au sens de Campana et Kollár (par exemple toute variété qui possède une variation de structures de Hodge mixtes dont l’application des périodes est finie).
Vacances - pas de séminaire
20 février 2023 00:00-00:00 -Oratrice ou orateur :
Résumé :
Une inégalité pour la norme l_1 des variétés complètes (An l_1-norm inequality for complete manifolds) (en visio)
13 février 2023 15:30-16:30 -Oratrice ou orateur : Caterina Campagnolo
Résumé :
Abstract : In the 80’s, Gromov introduced a new topological invariant, the simplicial volume of a manifold. He showed its deep connection with geometry by proving his « Main inequality », relating the simplicial volume to the volume of the manifold under some curvature assumptions.
Séminaire Commun de Géométrie - l'espace des métriques kählériennes
6 février 2023 14:00-16:00 -Oratrice ou orateur : Eleonora Di Nezza
Résumé :
L’espace des métriques kähleriennes.
Un problème classique en géométrie kählerienne est de trouver des métriques kähleriennes spéciales, cet à dire avec des bonnes propriétés de courbure. En relation avec ce problème, l’étude de l’espace des métriques kähleriennes, que l’on denote H, devient cruciale.
Cet espace à été étudié à partir des année 80 quand Mabuchi a introduit un produit scalaire sur chaque espace tangent. À partir de cela, une famille de distances d_p, p>=1, on été définie sur H en démontrant que (H, d_p) est une espace métriques mais pas complet.
Dans la première partie cette exposé on donnera un panorama de tout ce que on sait sur cet espace. Puis parlera plus en détail de ses géodésiques, son complété métrique et des distances d_p.
Les résultats présentés dans cette exposé sont basés sur des deux travaux, un en collaboration avec Vincent Guedj et l’autre en collaboration avec Chinh Lu.
Ligne d'étirement de Thurston pour surfaces à bord
30 janvier 2023 15:30-16:30 - Salle de conférences NancyOratrice ou orateur : Valentina Disarlo
Résumé :
En 1986 William Thurston a introduit une distance Lipschitz sur
l’espace de Teichmueller de surfaces fermées ou avec cusps. Avec Daniele
Alessandrini on a étendu cette théorie à l’espace de Teichmueller des
surfaces à bord géodésique. On construit une famille de géodésiques pour
l’espace de Teichmueller des surface à bord, qui généralisent les lignes
d’étirement construites par Thurston. Comme corollaire, on trouve une
nouvelle classe de géodésique dans l’espace de Teichmueller des surfaces
fermées avec la distance Lipschitz. Ce travail est en collaboration avec
Daniele Alessandrini (Columbia University).
Fonctions zêta dynamiques et torsion de Reidemeister
23 janvier 2023 15:30-16:30 - Salle de conférences NancyOratrice ou orateur : Léo Bénard
Résumé :
Structures localement conformément produit (Locally conformally product structures)
16 janvier 2023 15:30-16:30 - Salle de conférences NancyOratrice ou orateur : Brice Flamencourt
Résumé :
Les structures localement conformément produit (LCP) apparaissent sur les variétés conformes compactes lorsque l’on considère une connexion qui est localement la connexion de Levi-Civita d’une métrique, mais pas globalement. Le relèvement d’une telle connexion au revêtement universel de la variété LCP est la connexion de L-C d’une métrique produit, donnant sont nom à la structure.
Dans cet exposé, on décrira les propriétés fondamentales de ces structures, et on expliquera comment se construisent les exemples connus de variétés LCP, afin d’initier une classification. On étudie certains invariants naturels, et on exhibe également un lien avec la théorie des corps de nombres.
Abstract : The locally conformally product structures (LCP) arise on compact conformal manifolds when we consider a connection which is locally but not globally the Levi-Civita connection of a metric. The lift of such a connection to the universal cover of the LCP manifold is the L-C connection of a product metric, explaining the name of this structure.
In this talk, we will expose the properties of the LCP structures and we will construct some examples of LCP manifolds in order to initiate a classification. We introduce several invariants on LCP manifolds and we show that there exists a link with number fields theory.
Séminaire Commun de Géométrie - Finitude des groupes hyperboliques
9 janvier 2023 14:00-16:00 -Oratrice ou orateur : Gilles Courtois
Résumé :
Vacances - pas de séminaire
26 décembre 2022 00:00-00:00 -Oratrice ou orateur :
Résumé :
Vacances - pas de séminaire
19 décembre 2022 00:00-00:00 -Oratrice ou orateur :
Résumé :
Comportement asymptotique des espaces-temps spatialement homogènes
12 décembre 2022 15:30-16:30 - Salle de conférences NancyOratrice ou orateur : François Béguin
Résumé :
Les espaces-temps spatialement homogènes sont des modèles d’univers en Relativité Générale, où l’équation d’Einstein se réduit à une équation différentielle sur l’espace des métriques invariantes à gauche sur un groupe de Lie. J’expliquerai comment expliciter cette équation différentielle, puis comment l’étudier. Nous verrons que sa dynamique est étonnament riche et complexe. Mon but final sera de présenter un résultat de T. Dutilleul et moi-même qui affirme — en simplifiant grossièrement — que, si on choisit un espaces-temps spatialement homogène « au hasard », alors, avec une probabilité positive, la courbure de cet espace-temps oscille de manière chaotique quand on s’approche de sa singularité initiale.
Séminaire Commun de Géométrie - Régularité C^1 pour les minimiseurs du problème de Griffith
5 décembre 2022 14:00-16:00 -Oratrice ou orateur : Antoine Lemenant
Résumé :
Le problème de Griffith est un problème où l’on minimise la mesure de surface d’un certain « ensemble de discontinuité libre » qui intervient dans un modèle de propagation de fissure en élasticité linéarisée. Il s’agit d’une variante vectorielle de la célèbre fonctionnelle de Mumford-Shah, correspondant au cas scalaire et pour laquelle la régularité des minimiseurs est bien connue depuis les années 90. L’analogue vectoriel (Griffith) est beaucoup plus difficile à appréhender en raison de problèmes techniques que l’on tentera d’expliquer. Cependant, certains résultats partiels de régularité C^1 qui ont été obtenus récemment en collaboration avec Jean-François Babadjian (Paris-Saclay) et Flaviana Iurlano (Sorbone Université) en dimension 2, puis généralisés en dimension supérieure en collaboration avec Camille Labourie (Erlangen-Nuremberg). Le but final de l’exposé sera de présenter ces résultats récents. Avant cela, dans une première partie, nous présenterons un panorama rapide de la théorie de régularité classique en partant du problème de Plateau, puis en faisant le lien avec ce qui est connu (ou encore ouvert) sur Mumford-Shah, pour enfin aboutir à Griffith dans une seconde partie de l’exposé.
Totally umbilic surfaces in hyperbolic 3-manifolds of finite volume
28 novembre 2022 15:30-16:30 - Salle de conférences NancyOratrice ou orateur : Alvaro Ramos
Résumé :
Conversely, a complete, totally umbilic surface with mean curvature H, embedded in a hyperbolic 3-manifold of finite volume
must be proper and have finite, negative Euler characteristic.
Joint work with Colin Adams and William Meeks.
Problème isodiamétrique, densité et rectifiabilité
21 novembre 2022 15:30-16:30 - Salle de conférences NancyOratrice ou orateur : Antoine Julia
Résumé :
Un ensemble de l’espace euclidien est rectifiable s’il peut être couvert presque entièrement par des sous-variétés de classe
Mon exposé portera sur la question opposée : est-ce que la densité implique la rectifiabilité ?
Le problème est ouvert dans les espaces métriques généraux et assez lié au problème isodiamétrique : c’est-à-dire de trouver l’ensemble de volume maximal parmi les ensembles de diamètre fixé. Je donnerai une réponse dans le cas des groupes de Lie homogènes qui sont des modèles naturels pour la question. (C’est un travail en commun avec Andrea Merlo.)
La conjecture du volume de la TQFT de Teichmüller pour les nœuds twist
14 novembre 2022 15:30-16:30 - Salle de conférences NancyOratrice ou orateur : Fathi Ben Aribi
Résumé :
En 2011, Andersen et Kashaev ont défini une TQFT de dimension infinie à partir de la théorie de Teichmüller quantique. Cette TQFT de Teichmüller fournit un invariant des 3-variétés triangulées, et notamment des complémentaires de nœuds. La conjecture du volume associée affirme que la TQFT de Teichmüller du complémentaire d’un nœud hyperbolique contient le volume hyperbolique de ce nœud comme un certain coefficient asymptotique, et Andersen et Kashaev ont démontré cette conjecture pour les deux premiers nœuds hyperboliques.
Dans cet exposé, après un historique des invariants quantiques des nœuds et des conjectures du volume, je présenterai la construction de la TQFT de Teichmüller et comment nous avons démontré sa conjecture du volume pour la famille infinie des nœuds twist. Pour ce faire nous avons construit de nouvelles triangulations des complémentaires de ces nœuds, appelées triangulations géométriques car elles encodent la structure hyperbolique de la 3-variété sous-jacente.
Aucun prérequis en topologie quantique n’est nécessaire.
(en collaboration avec E. Piguet-Nakazawa et F. Guéritaud)
Vacances - pas de séminaire
31 octobre 2022 00:00-00:00 -Oratrice ou orateur :
Résumé :
Multi-géodésiques aléatoires sur les surfaces hyperboliques en grand genre
10 octobre 2022 15:30-16:30 -Oratrice ou orateur : Mingkun Liu
Résumé :
Sur une surface hyperbolique, une géodésique fermée est dite simple si elle ne s’intersecte pas, et une multi-géodésique est une union disjointe des géodésiques fermées simples. Dans cet exposé, j’expliquerai comment tirer une multi-géodésique au hasard, et tenterai de répondre à la question suivante : à quoi ressemble-t-elle une multi-géodésique aléatoire sur une surface hyperbolique de grand genre ?
On verra qu’elle ressemble à une permutation aléatoire, et en particulier, sur une surface hyperbolique de genre très grand, les longueurs moyennes des trois composantes les plus longues d’une multi-géodésique aléatoire sont approximativement 75,8%, 17,1%, et 4,9%, respectivement, de la longueur totale. Il s’agit d’un travail en commun avec Vincent Delecroix.
Séminaire commun de Géométrie
3 octobre 2022 14:00-16:00 -Oratrice ou orateur : Enrica Floris
Résumé :
Espaces fibrés de Mori de dimension 4 et leur groupe d’automorphismes.
Dans cet exposé j’expliquerai la relation entre l’étude des espaces fibrés de Mori rationnels avec l’action d’un groupe et l’étude des sous-groupes maximaux connexes du groupe de Cremona.
Dans le cas d’un espace fibré de Mori f:X->B sur une courbe rationnelle B, je présenterai un résultat d’existence de fermés f-horizontaux invariants par l’action du groupe d’automorphismes de X ainsi que des exemples.
Il s’agit d’un travail en collaboration avec Jérémy Blanc.
Séminaire commun de Géométrie
12 septembre 2022 14:00-16:00 -Oratrice ou orateur : Stéphane Druel
Résumé :
Un théorème de décomposition pour les variétés de Poisson holomorphes
Weinstein a montré que toute variété de Poisson holomorphe est localement le produit d’une variété symplectique et d’une variété de Poisson dont le rang est nul au point considéré. En particulier, toute variété de Poisson possède un feuilletage naturel dont les feuilles sont des variétés symplectiques. Dans un travail en collaboration avec Jorge Pereira, Brent Pym et Frédéric Touzet, nous montrons que si une variété de Poisson compacte kählérienne X a une feuille compacte L dont le groupe fondamental est fini alors, à un revêtement étale fini près, X est le produit du revêtement universel de L et d’une autre variété de Poisson.
Séminaire commun de Géométrie - Colloquium Hugo Parlier
5 juillet 2022 16:30-17:30 -Oratrice ou orateur :
Résumé :
https://dev-iecl.univ-lorraine.fr/events/titre-a-venir-99/