Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :
- Séminaire de géométrie différentielle : 14h-15h
- Séminaire de géométrie complexe : 15h30-16h30
Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.
The BNS sets of fundamental groups of complex algebraic varieties
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 novembre 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vasily Rogov Résumé :The BNS set of a finitely generated group $\Gamma$ is a certain canonical subset of the space of real additive characters on $\Gamma$. It is a subtle invariant of the group that naturally comes up in different questions of geometric and homological group theory. In the case when $\Gamma$ is the fundamental group of a compact Kähler manifold $X$, Thomas Delzant found a beautiful description of its BNS set in terms of holomorphic fibrations of $X$ over hyperbolic orbifold curves. Using it, he showed that if the fundamental group of a compact Kähler manifold is virtually solvable, it is in fact virtually nilpotent. I will explain the main ideas behind Delzant’s proof and how to generalise his theorems to the case when $X$ is a smooth complex quasi-projective variety. Time permitting, I will also discuss some applications and the case of quasi-Kähler manifolds.
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 décembre 2024 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazottes Résumé :Titre à préciser
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 9 décembre 2024 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickaël Nahon Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 6 janvier 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 février 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Archives
Sur la positivité maximale du cotangent logarithmique associé à un arrangement d’hyperplans
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 11 décembre 2023 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Clara Dérand Résumé :Une variété complexe est dite hyperbolique (au sens de Brody) si elle ne contient pas de courbe entière (non constante). Soit (X,D) est une paire logarithmique lisse, avec X une variété projective lisse et D un diviseur à croisements normaux. Le fibré cotangent logarithmique associé ne peut jamais être ample (on a un quotient trivial en restriction à chaque composante de D). On peut cependant montrer que si ce fibré est « le plus ample possible » (on dira qu’il est ample modulo D), alors le complémentaire X\D est hyperbolique. Plus généralement, on peut étudier la position des courbes entières via la positivité du cotangent logarithmique.
Dans cet exposé, on considérera le cas où D est un arrangement d’hyperplans en position générale dans Pn. On montrera une condition géométrique sur la position des hyperplans pour que le cotangent logarithmique soit ample modulo D, en construisant explicitement des droites d’obstruction. En particulier, on verra que pour au moins 4n-2 hyperplans génériques, le cotangent logarithmique est ample modulo D.
Groupe de Travail "Surfaces K3" : Espaces de modules
Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 11 décembre 2023 10:15-12:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoît Cadorel Résumé :Séminaire groupes algébriques
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 4 décembre 2023 14:00-15:00 Lieu : Oratrice ou orateur : Paul Philippe Résumé :Titre : Ordre de Bruhat affine et théorie de Kazhdan-Lusztig
La structure d’un groupe réductif (ou plus généralement de Kac-Moody) est largement controlée par son groupe de Weyl. En particulier, si G est un groupe de Kac-Moody et B un sous-groupe de Borel, la théorie de Kazhdan-Lusztig relie étroitement la géométrie de la variété de drapeaux G/B avec la structure de Coxeter de W.
Si l’on étudie G au dessus d’un corps discrètement valué, comme les corps p-adiques, on peut remplacer B par le groupe d’Iwahori I pour prendre en compte l’existence d’une valuation. Le groupe de Weyl doit être remplacé par une affinisation W^+. Lorsque G est un groupe réductif, W^+ est encore un groupe de Coxeter ce qui permet d’étendre la théorie de Kazhdan-Lusztig à la variété de drapeaux affines G/I. Ce n’est plus vrai si G est un groupe de Kac-Moody général, en particulier il n’y a pas d’ordre de Bruhat naturel sur W^+. Néanmoins en 2018, D. Muthiah et D. Orr ont pu définir une relation d’ordre et une longueur associée sur W^+ analogue aux ordres de Bruhat. Dans cet exposé, je présenterais plusieurs propriétés de cet ordre que nous avons obtenues avec Auguste Hébert et, si le temps le permet, j’expliquerais leur importance pour la construction d’une théorie de Kazhdan-Lusztig adaptée à ce cadre.
Mini-cours "Syzygies and Hilbert schemes"
Catégorie d'évènement : Géométrie Date/heure : 4 décembre 2023 10:30-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Daniele Agostini (Tübingen) Résumé :Groupe de Travail "Surfaces K3" : la construction de Kuga-Satake.
Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 27 novembre 2023 10:15-12:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Gianluca Pacienza Résumé :L’objectif de cet exposé est de présenter la construction de Kuga-Satake qui associe à toute structure de Hodge de type K3 une structure de Hodge de poids 1. Dans l’exposé nous introduirons les algèbres de Clifford et rappellerons le lien entre structures de Hodge et représentations avant de présenter la construction de Kuga-Satake. Nous terminerons en illustrant cette construction dans le cas des surfaces K3 de Kummer.
Measures of irrationality for projective varieties (Lecture 3)
Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 21 novembre 2023 16:30-18:00 Lieu : Salle Döblin Oratrice ou orateur : Francesco Bastianelli Résumé :Measures of irrationality for projective varieties (Lecture 2)
Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 21 novembre 2023 15:00-16:30 Lieu : Salle Döblin Oratrice ou orateur : Francesco Bastianelli Résumé :A lower bound of the first Steklov-Dirichlet eigenvalue for eccentric annuli
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 20 novembre 2023 15:30-16:30 Lieu : Oratrice ou orateur : Dong-Hwi Seo Résumé :The Steklov eigenvalue problem is an eigenvalue problem for an operator which is defined in the boundary of a domain. Since the operator is nonlocal, the eigenvalues depend on both the geometries of the interior and the boundary of the domain. In this talk, we consider the Steklov-Dirichlet eigenvalue problem in eccentric annuli and related problems. We obtain a lower bound of the first Steklov-Dirichlet eigenvalues of the eccentric annuli by analyzing the first eigenvalues if the distance between the boundary components are sufficiently close. This is based on joint work with Jiho Hong and Mikyoung Lim.