Séminaires

Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :

  • Séminaire de géométrie différentielle : 14h-15h
  • Séminaire de géométrie complexe : 15h30-16h30

Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.


The BNS sets of fundamental groups of complex algebraic varieties

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 novembre 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vasily Rogov Résumé :

The BNS set of a finitely generated group $\Gamma$ is a certain canonical subset of the space of real additive characters on $\Gamma$. It is a subtle invariant of the group that naturally comes up in different questions of geometric and homological group theory. In the case when $\Gamma$ is the fundamental group of a compact Kähler manifold $X$, Thomas Delzant found a beautiful description of its BNS set in terms of holomorphic fibrations of $X$ over hyperbolic orbifold curves. Using it, he showed that if the fundamental group of a compact Kähler manifold is virtually solvable, it is in fact virtually nilpotent. I will explain the main ideas behind Delzant’s proof and how to generalise his theorems to the case when $X$ is a smooth complex quasi-projective variety. Time permitting, I will also discuss some applications and the case of quasi-Kähler manifolds.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 décembre 2024 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazottes Résumé :

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 9 décembre 2024 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickaël Nahon Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 janvier 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 février 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Archives

Séminaire de géométrie complexe et groupes algébriques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 20 mars 2023 14:00-15:00 Lieu : Oratrice ou orateur : Ilia Smilga Résumé :

titre : *Action du groupe de Weyl sur l’espace des vecteurs MA-invariants*

résumé : Soit G un groupe de Lie réel semisimple, A son
« sous-espace de Cartan » ou « tore déployé maximal » (sous-algèbre
abélienne diagonalisable sur les réels maximale). On peut alors
définir son groupe de Weyl restreint W, comme le quotient du
normalisateur de A par son centralisateur. (Je donnerai des
exemples concrets).

Considérons maintenant une représentation irréductible de dimension
finie rho de ce groupe (agissant sur un espace V). Alors W a une
action bien définie sur le sous-espace V^L formé par les vecteurs de
V fixés par le normalisateur de A, appelé MA ou L.
Dans le groupe de Weyl (restreint), un rôle spécial est joué par le « mot
le plus long » w_0, qui envoie les racines (restreintes) positives sur
les racines (restreintes) négatives. Nous nous posons la question
suivante : dans quels cas ce w_0 a-t-il une action non triviale sur
V^L ? (Cette question est motivée par une certaine question en
dynamique des groupes de transformations affines.)

Cette question se décompose naturellement en deux parties : quelles sont
les représentations pour lesquelles, déjà, V^L est non trivial ? et
puis, parmi celles-ci, quelles sont celles où, en plus, w_0 agit
non-trivialement sur V^L ? Dans le cas particulier où G est déployé,
la première question est très facile, et nous avons trouvé la réponse à
la deuxième, qui est : « presque toutes ». Dans le cas général, j’ai
récemment obtenu la réponse à la première question, et pour la deuxième
question je dispose d’une conjecture. Je vais présenter tous ces travaux.


Séminaire « Groupes algébriques et géométrie complexe » (en ligne, horaire inhabituel)

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 13 mars 2023 16:00-17:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Sarah Dijols Résumé :

Titre : Induites paraboliques du groupe p-adique G_2 distinguées par SO_4

Résumé : Après une brève introduction pour motiver l’étude des représentations distinguées, j’expliquerai comment la théorie de Mackey pour les groupes p-adiques nous permet d’identifier ce type de représentations et les spécificités du cas de l’étude du groupe exceptionnel G_2. Je présenterai une première description de certaines des représentations distinguées pour la paire (G_2, SO_4), et une nouvelle approche en cours pour obtenir une classification plus complète de ces représentations où la structure des octonions joue un rôle central.


Mélange exponentiel du flot de repère sur les variétés hyperbolique géométriquement fini

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 13 mars 2023 14:00-15:00 Lieu : Oratrice ou orateur : Jialun Li Résumé :

Soit X une variété hyperbolique géométriquement fini, c-a-d, une variété hyperbolique avec un domaine fondamental de polyédrale fini. Il existe une mesure unique sur la fibre tangent unitaire invariante par le flot géodésique d’entropie maximal, et on considère son relevé dans le fibré des repères. Dans un travail commun avec Pratyush Sarkar et Wenyu Pan, on a démontré que le flot de repère est exponentiellement mélangeant par rapport à cette mesure. Pour établir le mélange exponentiel, on utilise un codage dénombrable de flot et une version de la méthode de Dolgopyat, à la Sarkar-Winter et Tsujii-Zhang. Pour surmonter les difficultés de la structure fractale, on a besoin de grand déviation pour la récurrence symbolique dans les grands ensembles.


La conjecture de Beauville-Voisin pour les sextiques EPW doubles

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 13 mars 2023 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Robert Laterveer Résumé :


Séminaire Commun de Géométrie - Hyperbolicité en présence d'un grand système local

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 6 mars 2023 14:00-16:00 Lieu : Oratrice ou orateur : Yohan Brunebarbe Résumé :

Hyperbolicité en présence d’un grand système local

 

Serge Lang a proposé plusieurs conjectures influentes reliant différentes notions d’hyperbolicité pour les variétés algébriques complexes projectives. Par exemple, il a conjecturé que le lieu balayé par les courbes entières coïncide avec le lieu balayé par les sous-variétés qui ne sont pas de type général, du moins après avoir pris les fermetures de Zariski. J’expliquerai que certaines de ces conjectures (dont celle ci-dessus) sont vraies pour les variétés qui admettent un grand système local complexe au sens de Campana et Kollár (par exemple toute variété qui possède une variation de structures de Hodge mixtes dont l’application des périodes est finie).


Sur la structure des polynômes différentiellement homogènes, et leur lien avec les différentielles de jets (tordues) sur les espaces projectifs

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 27 février 2023 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Antoine Etesse Résumé :


Problème de non-annulation pour les variétés à fibré anticanonique nef

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 27 février 2023 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Zhixin Xie Résumé :

Soit X une variété complexe proiective de dimension trois avec
bonnes singularités. Miyaoka a montré dans les années 1980 que si le
fibré canonique K_X est nef, alors un certain multiple de K_X est
effectif. Ceci est le théorème classique de non-annulation pour les
variétés minimales de dimension trois.
Dans cet exposé nous expliquerons des résultats analogues pour le fibré
anticanonique -K_X, ce qui correspondent au problème de non-annulation
pour les variétés à courbure semi-positive. Plus précisément, nous
montrerons que si -K_X est nef, alors la classe numérique de -K_X est
effective.
Il s’agit d’un travail en collaboration avec Vladimir Lazić, Shin-ichi
Matsumura, Thomas Peternell and Nikolaos Tsakanikas.


Groupe de travail surfaces minimales des 3 variétés hyperboliques

Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 27 février 2023 14:00-15:30 Lieu : Oratrice ou orateur : Jean-François Grosjean Résumé :

Jean-François nous expliquera les inégalités « les moins difficiles » de Calegari-Marques-Neves qui relient le comptage des surfaces minimales et les invariants asymptotiques de la variété.


Vacances - pas de séminaire

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 20 février 2023 00:00-00:00 Lieu : Oratrice ou orateur : Résumé :

Une inégalité pour la norme l_1 des variétés complètes (An l_1-norm inequality for complete manifolds) (en visio)

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 13 février 2023 15:30-16:30 Lieu : Oratrice ou orateur : Caterina Campagnolo Résumé :
Dans les années 80, Gromov a introduit un nouvel invariant topologique, le volume simplicial. Il a montré l’existence d’une connexion profonde entre cet invariant topologique et la géométrie des variétés au travers de son « inégalité principale », reliant le volume simplicial au volume sous certaines conditions de courbure.
Depuis, la communauté a essayé de généraliser et d’améliorer cette relation, en affaiblissant les hypothèses sur la courbure, en étendant ou en améliorant l’inégalité.
Dans un travail avec Shi Wang, nous étendons les résultats de Besson-Courtois-Gallot sur la norme l_1 de la classe fondamentale d’une variété fermée à toutes les classes d’homologie d’une variété complète. Nos inégalités sont plus précises que celles de Gromov et s’expriment en termes de l’exposant critique de la variété.
Je définirai les objets nécessaires, donnerai le contexte et enfin les idées principales de la preuve.
\  \

Abstract : In the 80’s, Gromov introduced a new topological invariant, the simplicial volume of a manifold. He showed its deep connection with geometry by proving his « Main inequality », relating the simplicial volume to the volume of the manifold under some curvature assumptions.

Since then, the community has tried to generalize and enhance this relation by weakening the curvature assumptions, extending, or improving the inequality.
In joint work with Shi Wang, we extend the results of Besson-Courtois-Gallot about the l_1-norm of the fundamental class of a closed manifold to all homology classes of a complete manifold. Our inequalities are sharper than Gromov’s original ones and are expressed in terms of the critical exponent of the manifold.
I will define all necessary objects, give some context and the main ideas of the proof.

3 4 5 6 7 8 9 10 11 12 13 14