A venir
Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :
- Séminaire de géométrie différentielle : 14h-15h
- Séminaire de géométrie complexe : 15h30-16h30
Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.
Compact Kähler Manifolds with Nef Anti-Canonical Bundle
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 8 décembre 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Qimin Zhang Résumé :In this talk, I will present recent joint work with S.~Matsumura, J.~Wang, and X.~Wu on the structure of compact Kähler manifolds whose anti-canonical bundle is nef. We establish a general structure theorem in the Kähler setting, showing that X admits a locally trivial fibration whose fibers are rationally connected and whose base has vanishing first Chern class. Our approach extends the method of Cao–Höring from the projective to the Kähler case, requiring new tools such as a flatness criterion for pseudo-effective sheaves and a refined analysis of direct image sheaves equipped with singular Hermitian metrics. I will also discuss the application, about the generalization of the Beauville–Bogomolov decomposition.
The geometry of Kerr black holes and the Teukolsky equation.
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 8 décembre 2025 15:30-16:30 Lieu : Oratrice ou orateur : Pascal Millet Résumé :An important family of solutions to the Einstein vacuum equations is given by the Kerr metrics, which describe rotating black holes. In this talk, I will present some important geometric properties of these spacetimes relevant to the study of classical field equations such as the scalar waves, electromagnetism and linearized gravity. As observed by Teukolsky, by exploiting a special algebraic property of the spacetime, it is possible to decouple certain components of the fields from the rest of the system, leading to the so-called Teukolsky equation. Solutions of this equation can then be analyzed to recover information about the full system.
Mori dreamness of blowups of P^3 along a curve
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 15 décembre 2025 14:00-15:00 Lieu : Salle 113 Oratrice ou orateur : Tiago Duarte Guerreiro Résumé :Mori dream spaces are a special kind of varieties introduced by Hu and Keel in 2000 that enjoy very good properties with respect to the minimal model program. In this talk we explore when blowups of P^3 along smooth curves are Mori dream spaces, generalizing an early example of A. Küronya. This is joint work with Sokratis Zikas.
Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 5 janvier 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 26 janvier 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Andrei Moroianu Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 2 février 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 9 février 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laurent Hauswirth Résumé :TBA
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 16 février 2026 15:30-16:30 Lieu : Oratrice ou orateur : Maxence Phalempin Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 2 mars 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 30 mars 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hiba Bibi Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 4 mai 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 1 juin 2026 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Fulvio Gesmondo Résumé :Geometric methods in computational complexity
Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 6 juillet 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Archives
séminaire groupes algébrique et géométrie complexe
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 15 avril 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vlerë Mehmeti Résumé :Titre et résumés à venir.
Comportement asymptotique des familles de Schottky dégénérescentes
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 15 avril 2024 14:00-15:00 Lieu : Salle de conférence virtuelle EDP Oratrice ou orateur : Vlerë Mehmeti Résumé :Dans cet exposé, je présenterai des résultats sur le comportement asymptotique d’un invariant associé à certaines actions de groupes par transformations de Möbius. Il s’agit de groupes, dit de Schottky, qui fournissent une théorie d’uniformisation pour les surfaces de Riemann compactes ayant l’avantage de se prolonger au cadre non archimédien. Pour certaines familles, y compris les groupes de réflexion de Schottky, nous obtenons une formule exacte pour le taux asymptotique de décroissance logarithmique de la dimension de Hausdorff de leurs ensembles limites.
Le cadre non archimédien est un outil crucial ici : l’invariant en question varie continûment sur un espace englobant à la fois des corps archimédiens et non (et c’est ces derniers qui apparaissent à « la limite »). Il s’agit d’un travail en commun avec Nguyen-Bac Dang.
Séminaire commun de géométrie
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 8 avril 2024 14:00-16:00 Lieu : Oratrice ou orateur : Giuseppe Ancona Résumé :Existence de disques non plans minimaux à bord libre dans des ellipsoïdes
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 25 mars 2024 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Romain Petrides Résumé :Une surface à bord (ici le disque) est minimale à bord libre dans une surface $S$ de $R^3$ si c’est une surface minimale qui rencontre S orthogonalement le long du bord. Bien sûr, les disques équatoriaux, qui sont plans, satisfont cette propriété sur les ellipsoïdes. Nous montrons l’existence de disques non plans minimaux à bord libre plongés dans des ellipsoïdes $R^3$. C’est une réponse à une question posée par Dierkes, Hildebrandt, Küster et Wohlrab en 1992. Le résultat est comparable à la réponse récente d’une question de Yau en 1987 par Haslhofer et Ketover en 2019 : il existe des sphères minimales plongées non équatoriales dans des ellipsoïdes de $R^4$ suffisamment allongés.
Pour montrer ce résultat, nous utilisons une caractérisation des immersions minimales d’une surface à bords dans des ellipsoïdes comme objets critiques de fonctionnelles qui combinent des valeurs propres de Steklov dépendant d’une métrique Riemannienne sur la surface. Nous obtenons ces disques non plans par maximisation de combinaisons linéaires de la première et seconde valeur propre de Steklov bien choisies parmi les métriques du disque à périmètre fixé. Nous expliquerons pourquoi nous construisons également des disques plongés par cette méthode.
Higher multiplier ideals and Hodge theory
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 25 mars 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ruijie Yang Résumé :Starting from 1980s, multiplier ideals, arising simultaneously in complex geometry, number theory and singularity theory, has played an important role in complex algebraic geometry and commutative algebra. In this talk, I will introduce a refined version of multiplier ideals in the sense of Hodge theory, called higher multiplier ideals. It provides new invariants for singularities of hypersurfaces. This is based on the joint work with Christian Schnell.
A-upper motives
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 18 mars 2024 15:30-16:30 Lieu : Salle Döblin Oratrice ou orateur : Nikita Karpenko Résumé :In a joint work with Charles de Clercq and Anne Quéguiner-Mathieu,
we are extending to arbitrary reductive groups former results on motivic
structure of projective homogeneous varieties under groups of inner type.
Cohomologie L2 des Variations de Structure de Hodge sur les revêtements de courbes
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 18 mars 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bastien Jean Résumé :Dans cet exposé, nous allons présenter les propriétés de quelques complexes de sections L2 associée à une variation de structures de Hodge polarisées sur une variété Kählerienne. Nous allons nous intéresser plus particulièrement au cas d’un revêtement galoisien d’une courbe ouverte M muni d’une métrique à singularité de type Poincaré. Nous allons montrer que l’on obtient une structure de Hodge pure sur les groupes de cohomologie de ces complexes vu comme module sur une algèbre convenable dépendant du groupe du revêtement. Nous allons faire le lien si le temps le permet avec la théorie conjecturale de la cohomologie L2 des modules de Hodge sur les revêtements de variétés algébriques développée par P. Eyssidieux
TBA
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 11 mars 2024 15:30-16:30 Lieu : Oratrice ou orateur : Rémi Coulon Résumé :Cycles in the K3 period domain, moduli of families over the projective line, and deformation of hyperkähler metrics
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 11 mars 2024 15:30-16:30 Lieu : Salle Döblin Oratrice ou orateur : Daniel Greb Résumé :Hyperkähler metrics on K3 surfaces give rise to rational curves of degree 2 in the K3 period domain, socalled « twistor cycles ». While these are used in the proofs of many deep results, their existence also implies that the group of isometries of the K3 lattice does not act properly discontinuously on the period domain, preventing a moduli space of unpolarised complex K3 surfaces to exist. I will report on work in progress with Martin Schwald (Cologne), in which we study the cycle space of the K3 period domain. This space parametrises twistor cycles as part of its real locus, but also all their degenerations and complex deformations as submanifolds of the period domain. I will explain how many foundational problems regarding the moduli theory of K3s disappear when passing to the cycle space and also indicate how the original version of Penrose’s Twistor Theory (the « nonlinear graviton » construction) can be used to understand what kind of geometric structure a small complex deformation of an honest twistor line corresponds to.
Séminaire groupes algébriques
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 11 mars 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Claudio Bravo Résumé :Titre : Sur l’homologie relative des certains sous-groupes
arithmetiques de SU(3)
Dans une première partie de cet exposé, nous allons rappeler un certain nombre de théorèmes
classiques permettant d’appliquer la théorie géométrique des groupes à l’étude de leur homologie.
Dans une deuxième partie, on se concentrera sur l’homologie des certains groupes de nature arithmétique dans le contexte des corps globaux de caractéristique positive. Plus précisément, soit k un tel corps et soit G = SU3 le k-groupe non-déployé défini par une forme hermitienne en 3 variables.
On décrira alors les groupes d’homologie relative de certains sous-groupes arithmétiques G de G(k)
modulo un système de représentants U des classes de conjugaison de ses sous-groupes maximaux
unipotents. Autrement dit, cela permettra de comparer les groupes d’homologie de G au co-produit
des groupes d’homologie des éléments de U.