Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :
- Séminaire de géométrie différentielle : 14h-15h
- Séminaire de géométrie complexe : 15h30-16h30
Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.
Titre à préciser
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 9 décembre 2024 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickaël Nahon Résumé :Curvature equations and stabilities of holomorphic vector bundles
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 décembre 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Scarpa Résumé :A fundamental result in Complex Geometry is the Kobayashi-Hitchin correspondence, stating that a holomorphic vector bundle on a Kähler manifold is poly-stable (as defined by Mumford, Takemoto) if and only if it admits a Hermitian metric solving the Hermite-Einstein equation. It has now become clear that there exist many possible different stability notions for vector bundles, that are of great interest in Algebraic Geometry and String Theory. It is natural to wonder if these stabilities are also tied to the existence of Hermitian metrics with special curvature properties. In this talk, based on joint work with Julien Keller (arXiv:2405.03312[math.DG]), we will consider a class of « polynomial » equations for the curvature of rank 2 holomorphic vector bundles on compact projective surfaces, and a corresponding class of polynomial stability conditions for these bundles. We will then explain how each of these stability conditions is related to the existence of a Hermitian metric satisfying the corresponding equation. This refines and partially confirms a conjectural correspondence between Bridgeland stability conditions and PDEs on holomorphic vector bundles, formulated by Dervan, McCarthy, and Sektnan.
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 6 janvier 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 février 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Archives
Séminaire commun de Géométrie - REPORTE
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 13 juin 2022 14:00-16:00 Lieu : Oratrice ou orateur : Olga Romaskevich Résumé :Séminaire reporté en 2022-2023. Date précisée ultérieurement.
Laplaciens de Witten : petites valeurs propres et cohomologie persistente (d’après des travaux en collaboration avec Francis Nier et Claude Viterbo)
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 30 mai 2022 15:00-16:00 Lieu : Salle Döblin Oratrice ou orateur : Dorian Le Peutrec Résumé :Berndtsson-Lempert method for Ohsawa-Takegoshi extension theorem
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 30 mai 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Xu Wang Résumé :Un peu de topologie de l’espace des courbes hyperelliptiques munies de points de torsion
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 23 mai 2022 13:00-14:00 Lieu : Lien du séminaire de géométrie complexe Oratrice ou orateur : Quentin Gendron Résumé :Les courbes hyperelliptiques sont des revêtements ramifiés de degré deux
de la droite projective. Dans le complément des points de ramification,
la préimage d’un point est constituée de deux points distincts notés p
et q. La différence p-q est de r-torsion s’il existe une fonction qui a
un zéro d’ordre r en p et un pôle d’ordre r en q (et aucune autre
singularité). La recherche de courbes hyperelliptiques définies sur les
rationnels avec r points de torsion est un problème important encore
largement ouvert.
Au contraire, dans le cas complexe on sait qu’il existe des surfaces
possédant une paire de r-torsion pour tout r suffisamment grand. Les
courbes munies de points de r-torsion forment des sous-espaces T_{g,r}
de l’espace des modules des courbes hyperelliptiques pointées. Ces
sous-espaces ne semblent pas avoir fait l’objet d’études approfondies.
Dans cet exposé, je souhaite montrer que leur topologie est
intéressante: à g fixé et pour r assez grand, l’espace T_{g,r} possède
environ g/2 composantes connexes.
J’expliquerai ce résultat grâce à des objets classiques, tels que
l’équation de Pell-Abel, les différentielles de troisième espèce ou les
tresses. Ce résultat a été obtenu conjointement dans un travail en
préparation avec Andrei Bogatyrev.
Un peu de topologie de l'espace des courbes hyperelliptiques munies de points de torsion
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 mai 2022 15:30-16:30 Lieu : Lien du séminaire de géométrie complexe Oratrice ou orateur : Quentin Gendron Résumé :Les courbes hyperelliptiques sont des revêtements ramifiés de degré deux
de la droite projective. Dans le complément des points de ramification,
la préimage d’un point est constituée de deux points distincts notés p
et q. La différence p-q est de r-torsion s’il existe une fonction qui a
un zéro d’ordre r en p et un pôle d’ordre r en q (et aucune autre
singularité). La recherche de courbes hyperelliptiques définies sur les
rationnels avec r points de torsion est un problème important encore
largement ouvert.
Au contraire, dans le cas complexe on sait qu’il existe des surfaces
possédant une paire de r-torsion pour tout r suffisamment grand. Les
courbes munies de points de r-torsion forment des sous-espaces T_{g,r}
de l’espace des modules des courbes hyperelliptiques pointées. Ces
sous-espaces ne semblent pas avoir fait l’objet d’études approfondies.
Dans cet exposé, je souhaite montrer que leur topologie est
intéressante: à g fixé et pour r assez grand, l’espace T_{g,r} possède
environ g/2 composantes connexes.
J’expliquerai ce résultat grâce à des objets classiques, tels que
l’équation de Pell-Abel, les différentielles de troisième espèce ou les
tresses. Ce résultat a été obtenu conjointement dans un travail en
préparation avec Andrei Bogatyrev.
Variétés sphériques et conjecture YTD effective
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 9 mai 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thibaut Delcroix Résumé :La conjecture de Yau-Tian-Donaldson en géométrie complexe relie l’existence de métriques de Kähler canoniques et la notion algébro-géométrique de K-stabilité. Une version forte a été prouvée pour les métriques de Kähler-Einstein sur les variétés de Fano il y a presque dix ans, et elle a considérablement amélioré notre compréhension de ce problème. Pour des métriques de Kähler canoniques plus générales, telles que les métriques de Kähler extrémales de Calabi, la conjecture YTD est toujours ouverte et, ce qui est peut-être plus important, son utilité pour prouver l’existence de métriques de Kähler extrémales est beaucoup moins claire. Je présenterai un raffinement possible de la conjecture YTD, inspiré par quelques indices dans la littérature, puis des résultats partiels dans cette direction dans le cadre des variétés sphériques.
Séminaire commun de Géométrie - Construction de surfaces minimales : approche variationnelle
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 2 mai 2022 14:00-16:00 Lieu : Oratrice ou orateur : Laurent Mazet Résumé :Comme tous les « Séminaires communs de géométrie », cet exposé est constitué de deux parties, la première de 14h à 14h45 pour un large public, la seconde de 15h15 à 16h pour un public plus intéressé. Entre les deux, une pause « thé-gâteaux » est offerte par l’équipe de géométrie
Première partie : Construction de surfaces minimales : approche variationnelle.
Résumé : Après avoir expliqué ce que sont les surfaces minimales, je présenterai quelques éléments de l’approche variationnelle qui peut être utilisée pour en construire.
Partie spécialisée : Rigidité des variétés riemanniennes contenant un équateur
résumé : Si une métrique sur la sphère S^2 à courbure comprise entre 0 et 1 possède une géodésique de longueur 2\pi, alors la courbure est constante égale à 1. Ce résultat de rigidité est dû à Calabi. En dimension 3 et sous les mêmes hypothèses de courbure sectionnelle, l’existence d’une sphère minimale d’aire 4\pi rigidifie aussi la métrique. Ce résultat a été obtenu dans un travail précédent avec H. Rosenberg. Dans cet exposé je présenterai comment ce travail peut être généralisé en codimension supérieure. Je donnerai aussi comme conséquence un théorème de rigidité pour le « width » de Simon-Smith.
Variétés de Robinson et connexions adaptées
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 25 avril 2022 15:30-16:30 Lieu : Salle Döblin Oratrice ou orateur : Robert Petit Résumé :Les variétés de Robinson sont des variétés pseudoriemanniennes que l’on peut réaliser comme fibrés en droites (ou cercles) au dessus de variétés CR. Ces variétés sont présentes dans l’étude des solutions exactes de la relativité générale et plus précisément dans les métriques de type trou noir (Kerr, Taub-Nut). Après avoir présenté ces variétés et donné quelques exemples, nous introduirons dans cet exposé une connexion métrique (différente de la connexion de Levi-Civita) adaptée à l’étude de la géométrie de ces variétés.
Le tore "tue" les nombres de Chern et c'est bien le seul !
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 avril 2022 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Benoit Claudon Résumé :Dans un travail en commun avec Patrick Graf et Henri Guenancia, nous nous sommes intéressés à un analogue singulier du théorème de Yau qui affirme qu’une variété kählérienne compacte dont les 2 premières classes de Chern sont nulles admet un revêtement étale qui est un tore. Pour généraliser ce type de résultat au cas klt, nous établissons une version singulière de l’inégalité de Bogomolov–Gieseker. Nous nous appuyons également sur le théorème de décomposition pour les espaces kählériens Ricci plat obtenu par Bakker–Guenancia–Lehn.
Vacances
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 18 avril 2022 15:30-16:30 Lieu : Oratrice ou orateur : Résumé :16