Séminaires

Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :

  • Séminaire de géométrie différentielle : 14h-15h
  • Séminaire de géométrie complexe : 15h30-16h30

Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.


The BNS sets of fundamental groups of complex algebraic varieties

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 novembre 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vasily Rogov Résumé :

The BNS set of a finitely generated group $\Gamma$ is a certain canonical subset of the space of real additive characters on $\Gamma$. It is a subtle invariant of the group that naturally comes up in different questions of geometric and homological group theory. In the case when $\Gamma$ is the fundamental group of a compact Kähler manifold $X$, Thomas Delzant found a beautiful description of its BNS set in terms of holomorphic fibrations of $X$ over hyperbolic orbifold curves. Using it, he showed that if the fundamental group of a compact Kähler manifold is virtually solvable, it is in fact virtually nilpotent. I will explain the main ideas behind Delzant’s proof and how to generalise his theorems to the case when $X$ is a smooth complex quasi-projective variety. Time permitting, I will also discuss some applications and the case of quasi-Kähler manifolds.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 décembre 2024 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazottes Résumé :

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 9 décembre 2024 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickaël Nahon Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 janvier 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 février 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Archives

Sous-schémas en groupes paraboliques en caractéristique positive

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 12 juin 2023 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Matilde Maccan Résumé :
Dans l’étude des variétés de drapeaux non séparés, i.e. quotients projectifs X=G/P d’un groupe (semi)simple G, en caractéristique p>0 on s’interesse aux sous-schémas en groupes paraboliques P non réduits. On suppose que le groupe de Picard de X est isomorphe à Z, ce qui revient à dire que la partie réduite de P est un parabolique lisse maximal.
En tout type et caractéristique, sauf pour p=2 en type G_2, ces sous-groupes s’obtiennent tous à partir de noyaux d’isogenies purement inseparables : cela generalise les travaux de Haboush-Lauritzen et Wenzel sur le sujet.
On introduit une classification des isogenies avec source simplement connexe, ensuite on présente une esquisse de la preuve du résultat principal. Si le temps le permet, on terminera avec le cas de G_2 en caractéristique 2, ce qui fournit une classification complète en rang de Picard 1.

Séminaire Commun de Géométrie - Dualité structures complexes-hyperboliques et projectives réelles

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 5 juin 2023 14:00-16:00 Lieu : Oratrice ou orateur : Andrès Sambarino Résumé :
Une dualité entre les structures complexe-hyperboliques et les structures projectives réelles
Soit $M$ une variété (réelle-)hyperbolique fermé. Un résultat classique dû à Bourdon entraîne que pour toute action convexe co-compact du $\pi_1M$ dans l’espace hyperbolique-complexe, la dimension de Hausdorff de son ensemble limite est minorée par $n-1$, avec égalité uniquement lorsque l’action laisse invariante une copie totalement géodésique de l’espace hyperbolique réel.
Dans cette exposé on regardera une version infinitésimale de cet énoncé, portant sur la deuxième variation de la dimension de Hausdorff de l’ensemble limite, pour des déformations de cette dernière action. Notre calcul se base sur une étude de l’espace des structures projectives réelles sur $M$ et d’une métrique naturelle, dite de Pression, qu’il porte.
C’est un travail en collaboration avec M. Bridgeman, B. Pozzetti et A. Wienhard.

Titre à venir

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 22 mai 2023 15:30-16:30 Lieu : Oratrice ou orateur : Yann Chaubet Résumé :

Les singularités I-bonnes: l'intersection entre la théorie analytique et la théorie algébrique

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 mai 2023 14:00-15:00 Lieu : Oratrice ou orateur : Mingchen Xia Résumé :
Les fibrés vectoriels sur une variété projective complexe lisse admettent de nombreuses théories algébriques. En particulier, on peut définir les classes de Chern, les nombres d’intersection etc. D‘autre part, si les fibrés sont munis de métriques Hermitiennes lisses, ces théories algébriques ont des analogues analytiques. Par exemple, au lieu des classes de Chern, on considère les formes de Chern qui représentent les classes de Chern.
Quand les métriques sont singulières, les objets définis au point de vue analytique ne représentent pas toujours les objects algébriques correspondants. Nous introduirons une notion d’I-bonnes singularités sur les fibrés vectoriels. On verra que quand les singularités sont I-bonnes, aucune pathologie ne se produit. Cette notion généralise partiellement celle de bonne métrique de Mumford.

Séminaire Commun de Géométrie - équidistribution d'intersections typiques avec des sous-variétés localement homogènes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 15 mai 2023 14:00-16:00 Lieu : Oratrice ou orateur : Nicolas Tholozan Résumé :
Titre: équidistribution d’intersections typiques avec des sous-variétés localement homogènes
Résumé: Je présenterai un travail en collaboration avec Salim Tayou qui donne une réponse assez générale à la question suivante: Etant donnée une sous-variété V d’un espace localement homogène X et une suite équidistribuée O_n de sous-espaces localement homogènes de X, vers quoi s’équidistribue l’intersection de O_n avec V ?
Cette question est principalement motivée par ses applications à la théorie de Hodge. Notre réponse fournit par exemple des théorèmes d’équidistribution pour le lieu de Noether—Lefschetz d’une famille de variété algébriques ou pour les variétés abéliennes à multiplication complexe.

Vacances - pas de séminaire

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 24 avril 2023 00:00-00:00 Lieu : Oratrice ou orateur : Résumé :

Vacances - pas de séminaire

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 17 avril 2023 00:00-00:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire Commun de Géométrie - Géométrie des surfaces plates de grand genre

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 avril 2023 14:00-16:00 Lieu : Oratrice ou orateur : Elise Goujard Résumé :

Dans cet exposé on s’intéressera aux surfaces de demi-translation et plus particulièrement aux surfaces à petits carreaux de demi-translation. Après avoir rappelé quelques résultats sur la répartition de ces surfaces dans les espaces de modules de surfaces plates, j’exposerai des résultats récents et des conjectures sur la géométrie et la combinatoire de ces surfaces en grand genre.

Dans le cas générique (strates principales des espaces de modules), ces résultats sont dus à un travail en collaboration avec V. Delecroix, P.Zograf and A. Zorich, et s’interprètent également en terme de mutlicourbes fermées sur les surfaces. J’expliquerai également ce que l’on sait faire dans le cas des strates impaires et les conjectures correspondantes (travail en commun avec E. Duryev et I. Yakovlev).


Semi-continuité supérieure de l’indice de Morse des immersions de Willmore

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 27 mars 2023 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alexis Michelat Résumé :

L’indice de Morse d’un point critique d’un lagrangien L est la dimension de l’espace vectoriel
maximal sur lequel la dérivée seconde D^2 L s’annule. Dans la théorie classique des variétés de Hilbert, on montre que l’indice de Morse est semi-continu inférieurement, tandis que la somme de l’indice
de Morse et de la nullité (la dimension du noyau de l’opérateur différentiel associé à la dérivée seconde) est semi-continu supérieurement.
Dans un article récent (arXiv:2212.03124) de Francesca Da Lio, Matilde Gianoca, et Tristan
Rivière, une nouvelle méthode d’estimation de l’indice de Morse est développée dans le cas des
lagrangiens invariants conformes (ce qui inclut les applications harmoniques) en dimension 2. La
preuve repose sur une analyse délicate du comportement de la dérivée seconde dans les régions des
« cous » — qui lient la surface macroscropique à ses « bulles » — ainsi qu’une estimée ponctuelle de
la solution dans ces régions.
Dans cet exposé, nous montrerons comment généraliser cette méthode à l’énergie de Willmore, un
lagrangien invariant conforme associé aux immersions d’une surface de l’espace Euclidien. Les points
critiques de l’énergie de Willmore vérifiant une équation elliptique non-linéaire d’ordre 4, certaines
étapes feront apparaître de redoutables nouvelles difficultés techniques.
Si le temps le permet, nous essaierons de montrer le caractère universel de cette méthode, qui
laisse entrevoir de nombreuses extensions possibles : fonctionnelles de type Ginzburg-Landau en dimension 2, applications bi-harmoniques en dimension 4, fonctionnelle de Yang-Mills en dimension 4,
et généralisation de ces méthodes aux problèmes de min-max.
Travail en collaboration avec Tristan Rivière (ETH Zürich).


La conjecture de Beauville-Voisin pour les sextiques EPW doubles

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 27 mars 2023 15:30-16:30 Lieu : Salle Döblin Oratrice ou orateur : Robert Laterveer Résumé :


2 3 4 5 6 7 8 9 10 11 12 13