Nancy-Metz number theory seminar

Upcoming presentations

Un crible minorant effectif pour les entiers friables

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 November 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Adrien Mounier (Aix-Marseille Université) Résumé :

Soient $\mathcal{A}$ un ensemble fini d’entiers naturels non-nuls et $y \geq 1$. Nous donnons une minoration effective du cardinal de l’ensemble $\{n\in\mathcal{A} ; p|n \Rightarrow p \leq y\}$ sous la condition d’une bonne connaissance du niveau de répartition de l’ensemble $\mathcal{A}$. Quelques conséquences seront ensuite abordées, dont une application aux valeurs friables de polynômes ou de formes binaires à coefficients entiers, puis une application aux entiers friables voisins.


Une version effective du théorème des nombres premiers de Lu

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 December 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Vincent Gozé (Université du Littoral Côte d'Opale) Résumé :

Soit $\pi(x)$ le nombre de nombres premiers dans l’intervalle $[1,x]$. Nous savons depuis Euclide que $\pi(x)$ tend vers l’infini, mais à quelle vitesse ?  La réponse à cette question fut obtenue pour la première fois en 1896 par Jacques Hadamard et Charles-Jean de la Vallée Poussin qui démontrèrent, de manière indépendante, le théorème des nombres premiers: \[\pi(x)\sim \frac{x}{\log x}\quad(x\to \infty).\]
La démonstration de Hadamard et La Vallée Poussin utilise principalement les propriétés de la fonction zêta de Riemann et donc l’analyse complexe. Ce n’est qu’en 1949 qu’Erdős et Selberg publièrent indépendamment la première démonstration élémentaire (utilisant uniquement l’analyse réelle) du théorème des nombres premiers. Dans cet exposé, nous présenterons le développement historique des démonstrations élémentaires du théorème des nombres premiers puis nous donnerons une version effective du théorème des nombres premiers de Lu qui, à ce jour, donne le meilleur terme d’erreur en utilisant des méthodes élémentaires.


Sur une généralisation des puissances d'un entier (``powered numbers''). Application à un problème additif.

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 December 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Olivier Robert (Institut Camille Jordan) Résumé :

La notion de fonction puissance d’un nombre entier, introduite par Mazur (2000) fait intervenir le noyau (ou radical) d’un entier. Cette fonction lui  permet de définir une généralisation des puissances (“powered numbers”). Après avoir rappelé des résultats récents sur le noyau d’un entier, nous présenterons des résultats nouveaux sur la fonction de répartition des puissances généralisées, ainsi que sur un problème additif concernant la représentation d’un entier comme somme de puissances généralisées. Ce travail a été réalisé en collaboration avec J. Brüdern.


Abonnement iCal

Past presentations

De l’identité de B.-Reutenauer à la conjecture de Fraenkel et Simpson

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 17 June 2022 11:00-12:00 Lieu : Salle Döblin Oratrice ou orateur : Srečko Brlek (UQAM) Résumé :

Une identité remarquable relie deux mesures de complexité sur les mots: complexité en facteurs $C(n)$ et complexité palindromique $P(n)$. Il s’avère qu’elle est aussi valide quand on remplace la complexité palindromique $P(n)$ par celle des facteurs carrés $S(n)$. Ce résultat, facile à établir pour les mots finis, suggère cependant un lien avec la conjecture sur le nombre de facteurs carrés distincts dans un mot : les graphes de Rauzy y jouent un rôle essentiel.


Combinatoire des mots et théorie de Markoff

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 16 June 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Christophe Reutenauer (UQAM) Résumé :

La théorie de Markoff, élaborée par lui pour les formes quadratiques, a été étendue par Hurwitz et ses successeurs, aux approximations des réels par des rationnels. Elle concerne les nombres qui sont “mal approximés”, le plus mauvais d’entre eux étant le nombre d’or. On verra comment certains mots sur un alphabet à deux lettres, appelés mots de Christoffel, s’introduisent naturellement dans cette théorie.


Ensembles d'entiers sans progression arithmétique

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 9 June 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Anne de Roton (IECL) Résumé :

Loi Gaussienne du nombre d'entiers sans facteur carré dans les intervalles courts

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 19 May 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Sacha Mangerel (Université de Durham) Résumé :
C’est un problème d’intérêt général en théorie analytique des nombres de déterminer de manière précise la répartition des éléments d’une suite arithmétique, par exemple, la suite des nombres premiers. Étant donné un paramètre $1 \leq h \leq X$, on supposerait peut-être que le nombre d’éléments d’une suite“suffisamment régulière” dans un intervalle $(x,x+h]$, où $X \leq x \leq 2X$ est choisi uniformément au hasard, suit une loi probabiliste Gaussienne (au moins dans certaines plages de h = h(X)).  Suite au travail de Montgomery et Soundararajan de 2004, un tel résultat est connu pour la suite des nombres premiers, pourvu qu’on présume comme valide plusieurs conjectures profondes, entre autres l’hypothèse de Riemann. 

Pour modéliser les premiers, nous considérerons au cours de l’exposé de telles questions de nature statistique concernant la suite des entiers sans facteur carré (SFC), parmi d’autres suites “criblées”. J’espère pouvoir motiver et expliquer notre résultat principal inconditionnel qui énonce que le nombre de SFC dans les intervalles courts uniformément aléatoires suit en effet une loi Gaussienne, ce faisant résolvant plusieurs problèmes de R.R. Hall.

Ceci est un travail en commun avec O. Gorodetsky et B. Rodgers.


Summing $\mu(n)$: an even faster elementary algorithm

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 12 May 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Lola Thompson (Université de Utrecht) Résumé :

We present a new elementary algorithm for computing $M(x) = \sum_{n \leq x} \mu(n),$ where $\mu(n)$ is the Möbius function. Our algorithm takes
\[\begin{aligned}
\mathrm{time} \ \ O_\epsilon\left(x^{\frac{3}{5}} (\log x)^{\frac{3}{5}+\epsilon} \right)
\ \ \mathrm{and}\ \ \mathrm{space} \ \ O\left(x^{\frac{3}{10}} (\log x)^{\frac{13}{10}}
\right)\end{aligned},\] which improves on existing combinatorial algorithms. While there is an analytic algorithm due to Lagarias-Odlyzko with computations based on the integrals of $\zeta(s)$ that only takes time $O(x^{1/2 + \epsilon})$, our algorithm has the advantage of being easier to implement. The new approach roughly amounts to analyzing the difference between a model that we obtain via Diophantine approximation and reality, and showing that it has a simple description in terms of congruence classes and segments. This simple description allows us to compute the difference quickly by means of a table lookup. This talk is based on joint work with Harald Andrés Helfgott.


Euler-Kronecker constants and cusp forms

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 9 May 2022 11:00-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pieter Moree (Max Planck Institute, Bonn) Résumé :


A general sieve problem

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 5 May 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Andreas Weingartner (Southern Utah University, États-Unis) Résumé :

Given an arithmetic function $\theta$, we consider the set
$$ \mathcal{B}_\theta = \Bigl\{n\ge 1: p|n \Rightarrow p\le \theta\Bigl(\prod_{q<p \atop q^\alpha || n} q^\alpha \Bigr) \Bigr\},$$
where $p$ and $q$ denote primes. Depending on the choice of $\theta$, the possible sets $\mathcal{B}_\theta$ include the set of prime powers, almost primes, friable numbers, dense numbers, and practical numbers.
We will discuss (1) asymptotic results for the counting function of $\mathcal{B}_\theta$, (2) a generalization of the Siegel-Walfisz theorem, and (3) the normal order of the number of prime factors of integers in $\mathcal{B}_\theta$.


The distribution of character sums

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 April 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Jonathan Bober (Université de Bristol) Résumé :

Considering partial character sums as defining a family of random processes (by choosing the characters randomly from some set), it becomes natural to ask questions about the limiting distribution. I’ll describe this in some contexts and give examples of what we can find in the support. This is largely work of Ayesha Hussain, but also some joint work.


Valeurs polynomiales quartiques avec un grand facteur premier : les cas diédraux et cycliques

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 7 April 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cécile Dartyge (IECL) Résumé :

Soit P un polynôme à coefficients entiers, unitaire, irréductible, de degré 4 et de groupe de Galois diédral ou cyclique.
Il existe c = c(P) > 0, tel que P(n) ait un facteur premier supérieur à n1+c pour une proportion positive d’entiers n.

Il s’agit d’un travail  avec James Maynard.


Répartition des nombres premiers dans des suites d'entiers

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 31 March 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cécile Dartyge (IECL) Résumé :

Répétition du séminaire Bourbaki du vendredi 1er avril.


1 2 3 4 5 6 7 8 9 10 11 12