Upcoming presentations
Grands ensembles évitant certaines configurations
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 24 April 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Alexandre Bailleul (ENS Paris-Saclay) Résumé :En se laissant guider par l’exemple des ensembles de Sidon (ensembles de nombres dont les sommes de deux éléments sont uniques, très étudiés en combinatoire additive), je présenterai des résultats récents, en collaboration avec R. Riblet, où des techniques de théorie des ensembles permettent de construire des ensembles “grands” en certains sens (cardinalité, mesure ou dimension) tout en étant “épars” car évitant des configurations prescrites (pas de relation linéaire, ou ne contenant pas de parallélogramme, etc.). Des questions subtiles en lien avec l’axiome du choix seront évoquées.
A venir
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 May 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (CNRS, Lille) Résumé :Past presentations
De l’identité de B.-Reutenauer à la conjecture de Fraenkel et Simpson
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 17 June 2022 11:00-12:00 Lieu : Salle Döblin Oratrice ou orateur : Srečko Brlek (UQAM) Résumé :Une identité remarquable relie deux mesures de complexité sur les mots: complexité en facteurs
Combinatoire des mots et théorie de Markoff
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 16 June 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Christophe Reutenauer (UQAM) Résumé :La théorie de Markoff, élaborée par lui pour les formes quadratiques, a été étendue par Hurwitz et ses successeurs, aux approximations des réels par des rationnels. Elle concerne les nombres qui sont “mal approximés”, le plus mauvais d’entre eux étant le nombre d’or. On verra comment certains mots sur un alphabet à deux lettres, appelés mots de Christoffel, s’introduisent naturellement dans cette théorie.
Ensembles d'entiers sans progression arithmétique
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 9 June 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Anne de Roton (IECL) Résumé :Loi Gaussienne du nombre d'entiers sans facteur carré dans les intervalles courts
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 19 May 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Sacha Mangerel (Université de Durham) Résumé :Pour modéliser les premiers, nous considérerons au cours de l’exposé de telles questions de nature statistique concernant la suite des entiers sans facteur carré (SFC), parmi d’autres suites “criblées”. J’espère pouvoir motiver et expliquer notre résultat principal inconditionnel qui énonce que le nombre de SFC dans les intervalles courts uniformément aléatoires suit en effet une loi Gaussienne, ce faisant résolvant plusieurs problèmes de R.R. Hall.
Ceci est un travail en commun avec O. Gorodetsky et B. Rodgers.
Summing : an even faster elementary algorithm
Catégorie d'évènement : Analyse et théorie des nombres
Date/heure : 12 May 2022 14:30-15:30
Lieu : Salle Döblin
Oratrice ou orateur : Lola Thompson (Université de Utrecht)
Résumé : We present a new elementary algorithm for computing
Euler-Kronecker constants and cusp forms
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 9 May 2022 11:00-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pieter Moree (Max Planck Institute, Bonn) Résumé :A general sieve problem
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 5 May 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Andreas Weingartner (Southern Utah University, États-Unis) Résumé :Given an arithmetic function
where
We will discuss (1) asymptotic results for the counting function of
The distribution of character sums
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 April 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Jonathan Bober (Université de Bristol) Résumé :Considering partial character sums as defining a family of random processes (by choosing the characters randomly from some set), it becomes natural to ask questions about the limiting distribution. I’ll describe this in some contexts and give examples of what we can find in the support. This is largely work of Ayesha Hussain, but also some joint work.
Valeurs polynomiales quartiques avec un grand facteur premier : les cas diédraux et cycliques
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 7 April 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cécile Dartyge (IECL) Résumé :Soit P un polynôme à coefficients entiers, unitaire, irréductible, de degré 4 et de groupe de Galois diédral ou cyclique.
Il existe c = c(P) > 0, tel que P(n) ait un facteur premier supérieur à n1+c pour une proportion positive d’entiers n.
Il s’agit d’un travail avec James Maynard.
Répartition des nombres premiers dans des suites d'entiers
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 31 March 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cécile Dartyge (IECL) Résumé :Répétition du séminaire Bourbaki du vendredi 1er avril.