Exposés à venir
Archives
Equipartition de l'énergie pour les ondes de surface
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 juin 2023 11:00-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Claude Zuily (Orsay) Résumé :On traveling waves for some Gross-Pitaevskii equations
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 30 mai 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : André de Laire (Lille) Résumé :Une frontière de la stabilité non linéaire : les ondes singulières des systèmes hyperboliques
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 23 mai 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Miguel Rodrigues (Rennes) Résumé :L’exposé se veut une introduction à l’une des frontières actuelles de notre compréhension de la stabilité non linéaire des ondes progressives des équations aux dérivées partielles, spécifiquement comment la stabilité spectrale implique la stabilité non linéaire pour les ondes progressives générales des systèmes hyperboliques.
Les principaux obstacles à une théorie générale trouvent leur origine dans le fait que les profils des ondes comprennent typiquement des discontinuités et/ou des points caractéristiques, tous deux ayant un fort impact même au niveau spectral.
L’exposé montrera quelques avancées significatives vers une théorie générale obtenues par l’orateur dans une série de travaux en collaborations (disjointes) avec Vincent Duchêne (Rennes), Paul Blochas (Rennes), Louis Garénaux (Karlsruhe) et Grégory Faye (Toulouse).
Vers l’invariance de la mesure de Gibbs pour NLS sur la sphère.
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 mai 2023 09:30-10:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas Camps (Université de Nantes) Résumé :Mesures invariantes pour l'équation de Benjamin-Ono
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 mai 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nikolay Tzvetkov (ENS Lyon) Résumé :Nous allons discuter des méthodes pour construire des mesures invariantes pour l’équation de Benjamin-Ono et le rôle joué par l’intégrabilité de cette équation dans ces constructions.
Rearrangement of gradient
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 2 mai 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Andrea Gentile (Naples) Résumé :Collisions de points-vortex
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 avril 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Martin Donati (Grenoble) Résumé :Le système point-vortex décrit la dynamique de tourbillons idéaux dans un fluide 2D incompressible et non visqueux. Lorsqu’une collision de points-vortex se produit, la dynamique devient singulière et le temps de vie maximal des solutions est atteint. Nous discuterons de ce phénomène en montrant en particulier que les trajectoires des points-vortex sont 1/2-Hölderiennes jusqu’au temps de collision. Nous verrons également comment ce résultat s’étend en présence d’un bord, ainsi que dans le contexte des fluides quasi-géostrophiques. Nous mentionnerons également un résultat d’improbabilité des collisions, ainsi que le problème ouvert de l’existence de collisions au bord d’un domaine.
Bornes gaussiennes généralisées pour des opérateurs de convolution itérés
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 4 avril 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jean-François Coulombel (Toulouse) Résumé :L’exposé se fera en visio-conférence.
Résumé : On présente quelques résultats autour du
comportement asymptotique
d’opérateurs de convolution itérés (en une dimension d’espace). Ce
problème intervient à la
fois dans l’étude en temps grand des schémas aux différences finies pour
les équations
d’évolution ainsi que dans l’étude en temps grand des marches
aléatoires. Le but est d’obtenir
une généralisation du théorème dit de la limite locale en théorie des
probabilités, et de montrer
des bornes gaussiennes généralisées dans le cas « stable » des schémas
numériques stables pour
la norme du maximum. Il s’agit d’un travail en collaboration avec
Grégory Faye.