Séminaire Géométrie

Exposés à venir

Abonnement iCal

Archives

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 4 novembre 2024 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 7 octobre 2024 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 9 septembre 2024 14:00-16:00 Lieu : Oratrice ou orateur : Andreas Höring Résumé :

Variétés de Fano avec un lieu de base anticanonique

Les variétés de Fano et leurs sections anticanoniques font partie des sujets classiques de la géométrie algébrique. Dans la première partie de cet exposé je vais calculer à la main ces sections anticanoniques pour les surfaces les plus simples, c’est à dire P^2 et ses éclatements. On verra qu’il y a une surface (la fameuse surface de del Pezzo de degré un) dont les sections anticanoniques s’annulent tous dans le même point. Dans la seconde partie j’expliquerai comment cet exemple devient le point de départ de l’étude des variétés de Fano de dimension 4 avec un grand lieu de base anticanonique.

Séminaire commun de géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 1 juillet 2024 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 juin 2024 14:00-16:00 Lieu : Oratrice ou orateur : Simon Riche Résumé :

Support cohomologique des modules basculants pour les groupes algébriques réductifs

Il est connu depuis les années 1970 que de nombreuses informations concernant la théorie des représentations des groupes algébriques réductifs sur des corps de caractéristique positive peuvent s’exprimer en terme de la combinatoire du groupe de Weyl affine associé. Une forme subtile de cette relation a été conjecturée par Humphreys dans les années 1990, qui exprime le support cohomologique des représentations basculantes indécomposables en termes d’orbites nilpotentes associées aux cellules de Kazhdan-Lusztig bilatères (via une bijection de Lusztig). Dans cet exposé je présenterai des résultats obtenus en direction de cette conjecture, en collaboration avec Pramod Achar et William Hardesty.


Séminaire commun de géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 6 mai 2024 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 8 avril 2024 14:00-16:00 Lieu : Oratrice ou orateur : Giuseppe Ancona Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 4 mars 2024 14:00-16:00 Lieu : Oratrice ou orateur : Sébastien Boucksom Résumé :

Métriques kählériennes canoniques et éclatements

L’existence de métriques kählériennes canoniques (Kähler-Einstein, à courbure scalaire constante, etc…) dans une classe de cohomologie donnée d’une variété kählérienne compacte admet une formulation variationnelle comme équation d’Euler-Lagrange de certaines fonctionnelles. Grâce aux travaux profonds de Darvas-Rubinstein et Chen-Cheng, on sait que de plus qu’elles admettent des points critiques (donc des métriques canoniques) ssi elles satisfont une condition de croissance linéaire. Après avoir passé en revue ces objets fondamentaux, j’expliquerai comment cette caractérisation permet de généraliser des travaux d’Arezzo-Pacard et Seyyedali-Szekelyhidi portant sur la stabilité de telles métriques par éclatement de la variété. Il s’agit d’un travail en collaboration avec Mattias Jonsson et Antonio Trusiani.


Séminaire commun de géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 8 janvier 2024 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 18 décembre 2023 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Résumé :
1 2 3 4 5 6