Upcoming presentations
Caractérisation de formes binaires de même image.
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 23 January 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Etienne Fouvry (Orsay) Résumé :Soit $F(X,Y)$ une forme binaire à coefficients entiers, de discriminant non nul, de degré $\geq 3$.
A quelle condition, nécessaire et suffisante, existe-t-il une forme $G (X,Y)$, non $GL(2, Z)$-équivalente à $F(X,Y)$, telle qu’on ait l’égalité des images $F(Z^2) = G(Z^2)$ ?
La condition trouvée repose sur l’existence d’un élément d’ordre $3$, d’un certain type, dans le groupe d’automorphismes de $F$.
Travail en commun avec Peter Koymans.
Pierre Bieliavksy -- titre à venir
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 February 2025 14:14-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bieliavsky (Louvain-la-Neuve) Résumé :À venir
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 20 March 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Seth Hardy (Warwick) Résumé :À venir
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 May 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (Lille) Résumé :Past presentations
Les chiffres des nombres premiers.
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 19 December 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Joël Rivat (Université d'Aix-Marseille) Résumé :Résumé:
La difficulté du passage de la représentation digitale d’un entier à sa représentation multiplicative (en tant que produit de facteurs premiers) est à l’origine de nombreux problèmes ouverts importants en mathématiques et en informatique. Nous présenterons une sélection de résultats et de méthodes sur la répartition digitale de suites intéressantes, notamment les nombres premiers et les carrés, obtenus en collaboration avec Christian Mauduit, Michael Drmota, et plus récemment Guy Barat, Cécile Dartyge, Bruno Martin, Igor Shparlinski et Cathy Swaenepoel.
Sur une généralisation des puissances d'un entier (``powered numbers''). Application à un problème additif.
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 December 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Olivier Robert (Institut Camille Jordan) Résumé :La notion de fonction puissance d’un nombre entier, introduite par Mazur (2000) fait intervenir le noyau (ou radical) d’un entier. Cette fonction lui permet de définir une généralisation des puissances (“powered numbers”). Après avoir rappelé des résultats récents sur le noyau d’un entier, nous présenterons des résultats nouveaux sur la fonction de répartition des puissances généralisées, ainsi que sur un problème additif concernant la représentation d’un entier comme somme de puissances généralisées. Ce travail a été réalisé en collaboration avec J. Brüdern.
Pause pour arbre de Noël GNC à Orléans
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 December 2024 14:15-15:15 Lieu : Oratrice ou orateur : Résumé :Journée à l'honneur de David Vogan
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 December 2024 00:00-23:59 Lieu : Oratrice ou orateur : Résumé :Un crible minorant effectif pour les entiers friables
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 November 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Adrien Mounier (Aix-Marseille Université) Résumé :Soient $\mathcal{A}$ un ensemble fini d’entiers naturels non-nuls et $y \geq 1$. Nous donnons une minoration effective du cardinal de l’ensemble $\{n\in\mathcal{A} ; p|n \Rightarrow p \leq y\}$ sous la condition d’une bonne connaissance du niveau de répartition de l’ensemble $\mathcal{A}$. Quelques conséquences seront ensuite abordées, dont une application aux valeurs friables de polynômes ou de formes binaires à coefficients entiers, puis une application aux entiers friables voisins.
Surfaces minimales et surfaces de Ricci
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 November 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Benoît Daniel (IÉCL) Résumé :Les surfaces minimales sont les surfaces qui sont points critiques de la fonctionnelle d’aire à bord fixé. Elles sont caractérisées par le fait que leur courbure moyenne est nulle. Un problème posé par Ricci est de déterminer quelles surfaces riemanniennes peuvent être immergées (localement) isométriquement comme surfaces minimales de l’espace euclidien de dimension 3. Ricci a donné une caractérisation dans le cas où la surface est à courbure strictement négative. A. et S. Moroianu ont donné une caractérisation complète sans cette hypothèse et ont introduit la notion de surface de Ricci. Nous verrons des généralisations de cette notion, nous intéresserons aux surfaces de Ricci généralisées compactes et verrons le lien avec les surfaces à courbure constante et singularités coniques. Il s’agit d’un travail en commun avec Yiming Zang.
Pause pour workshop OpART à Besse
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 21 November 2024 14:15-15:15 Lieu : Oratrice ou orateur : Résumé :An algorithm for higher-order Fourier analysis (joint work with P. Candela and B. Szegedy)
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 14 November 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Diego González Sánchez (Université de Renyi) Résumé :Decomposing functions in terms of higher-order harmonics is a central topic in higher-order Fourier analysis. In its simplest form, such a decomposition is as follows. For a bounded function defined on a finite abelian group $f: Z\to \mathbb{C}$, we write it as $f=f_s+f_r+f_e$ where: $f_s$ is the sum of “a few” Fourier characters with large amplitudes, $f_r$ is a function whose largest Fourier amplitude is “small” (which is the same as having a small Gowers $U^2$ norm), and $f_e$ is small in $L^2$. Higher-order analogues where we ask $f_r$ to be small in the Gowers $U^d$ norm for $d\ge 3$ are interesting as we may use them to, e.g., prove Szemerédi’s theorem with good quantitative bounds. Many results guarantee that such a decomposition exists, but few are implementable in applied scenarios. In this talk, we will present a practical approach to finding such a decomposition in the $U^3$ case and demonstrate its performance on synthetic data.
Régularité locale optimale des coefficients matriciels de groupes de Lie semi-simples
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 14 November 2024 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Guillaume Dumas (Lyon) Résumé :Vincent Lafforgue a montré que tout coefficient matriciel SO(2)-fini d’une représentation unitaire de SO(3) est 1/2-Hölderien – en dehors de certains points singuliers. Ce seul résultat joue un rôle important dans la preuve de la propriété (T) renforcée pour SL(3,R) et d’autres avancées récentes en algèbre d’opérateurs. Dans cet exposé, j’expliquerai comment ce résultat de régularité peut s’interpréter en terme de paires de Gelfand et de fonctions sphériques. Grâce à cela, je montrerai qu’on peut le généraliser à tous les groupes de Lie semi-simples en étudiant le comportement asymptotique de ces fonctions. Dans le cas non-compact, la structure des groupes de Lie en donne une représentation intégrale aisément manipulable. Le cas compact est étonnement plus difficile et nécessite de passer par l’analyse complexe.
Un problème de Telhcirid
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 7 November 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Gautami Bhowmik (Université de Lille) Résumé :Nous étudions les nombres premiers avec l’ordre de leurs chiffres inversé (poci). Les nombres premiers palindromiques sont des exemples dont l’écriture inversée est également un nombre premier, mais tous les pocis n’est sont pas premiers. Nous démontrons l’infinitude des pocis dans toute progression arithmétique satisfaisant certains conditions simples. C’est un travail en collaboration avec Yuta Suzuki.