Séminaire de Géométrie complexe

Exposés à venir

Characterization of rational varieties by their groups of birational transformations

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 27 janvier 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Christian Urech Résumé :

To an algebraic variety X we associate its group of birational transformations Bir(X). In this talk, we will see the following theorem: If X is an algebraic variety such that Bir(X) is isomorphic to Bir(P^n), where P^n is the n-dimensional projective space, then X is birational to P^n. In other words, the group structure of Bir(X) determines whether X is rational or not. In another direction, I will explain that Borel subgroups of Bir(X), i.e. maximal connected solvable subgroups, are of derived length <= 2 dim(X) with equality if and only if X is rational and the Borel subgroup is standard. This is joint work with Regeta and Van Santen.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 février 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :

Divisorial elementary Mori contractions of maximal length

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 24 février 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bruno Dewer Résumé :

An elementary Mori contraction from a smooth variety $X$ is a morphism with connected fibres onto a normal variety which contracts a single extremal ray of $K_X$-negative curves. Thanks to a result by P. Ionescu and J. Wisniewsi, we know that the length of such a contraction (i.e. the minimal degree $-K_X$ can have on contracted rational curves) is bounded from above. In a paper which dates back to 2013, A. Höring and C. Novelli studied elementary Mori contractions of maximal length, that is, elementary Mori contractions for which the upper bound is met. Their main result exhibits the structure of a projective bundle for the locus of positive-dimensional fibres up to a birational modification. In my talk, I will move to the submaximal case, in other words the case where the length equals its upper bound minus one, and focus on the divisorial case.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Diego Izquierdo Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Abonnement iCal

Archives

Classifying Fano 4-folds with a rational fibration onto a 3-fold

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 20 janvier 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Saverio Secci Résumé :

In this talk I will present a joint work with C. Casagrande, in which we study smooth complex Fano 4-folds with a rational fibration onto a 3-fold. After an introduction on the setting and motivation, I will discuss our main result: if X is Fano 4-fold with a rational fibration onto a 3-fold and it is not a product of surfaces, then the Picard number of X is at most 9, and the bound is sharp. Moreover, I will present a classification result in a special case within the setting above, and show new examples of Fano 4-folds with large Picard number.


On the Holomorphic Convexity of Intermediate Coverings in Dimension Two

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 13 janvier 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Yuan Liu Résumé :

The Shafarevich conjecture asks whether the universal covering of a compact Kähler manifold is holomorphically convex. In this work, we explore a similar question regarding the holomorphic convexity of intermediate coverings. We prove that if the intermediate covering of a compact Kähler surface admits a faithful reductive representation for its covering group and does not have two ends, then it is holomorphically convex. The main techniques employed include the analysis of the degeneracy loci of the Levi form and the properties of subanalytic functions.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 janvier 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Curvature equations and stabilities of holomorphic vector bundles

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 décembre 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Scarpa Résumé :

A fundamental result in Complex Geometry is the Kobayashi-Hitchin correspondence, stating that a holomorphic vector bundle on a Kähler manifold is poly-stable (as defined by Mumford, Takemoto) if and only if it admits a Hermitian metric solving the Hermite-Einstein equation. It has now become clear that there exist many possible different stability notions for vector bundles, that are of great interest in Algebraic Geometry and String Theory. It is natural to wonder if these stabilities are also tied to the existence of Hermitian metrics with special curvature properties. In this talk, based on joint work with Julien Keller (arXiv:2405.03312[math.DG]), we will consider a class of « polynomial » equations for the curvature of rank 2 holomorphic vector bundles on compact projective surfaces, and a corresponding class of polynomial stability conditions for these bundles. We will then explain how each of these stability conditions is related to the existence of a Hermitian metric satisfying the corresponding equation. This refines and partially confirms a conjectural correspondence between Bridgeland stability conditions and PDEs on holomorphic vector bundles, formulated by Dervan, McCarthy, and Sektnan.


Chern ratios of surfaces with big cotangent bundle

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 9 décembre 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bruno De Oliveira Résumé :

We introduce the canonical model singularities (CMS) criterion for bigness of the cotangent bundle for surfaces. The CMS-criterion for bigness involves invariants for canonical singularities that we describe and we give formulas for A_n singularities. The CMS-criterion leads to conjectures and some answers about the geography and the possible ratios $c_1^2/c_2$ of surfaces with big cotangent bundle. Two cases are naturally separated: regular and irregular surfaces. For regular surfaces we apply the CMS-criterion to show the existence of deformations of hypersurfaces in $\mathbb{P}^3$ with big cotangent bundle for degree $d\ge 8$ and give an example of the regular surface with big  cotangent bundle with ratio close to 1/5. For irregular surfaces we show that there are examples with ratio as close to 1/5 as possible. If time permits, we talk about ratios  below 1/5.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 décembre 2024 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazottes Résumé :

Formalisme thermodynamique à basse température, dynamique symbolique et quasi-cristaux

L’étude de modèles simples de physique statistique sur le réseau $\mathbb{Z}^d$, visant à comprendre la transition du désordre vers un ordre périodique ou quasi-périodique quand la température est suffisamment basse, nécessite une interconnexion entre le formalisme des mesures de Gibbs et des états d’équilibre, la dynamique symbolique multidimensionnelle, les pavages et l’informatique théorique. En particulier, des espaces associés aux marginales finies-dimensionnelles des mesures invariantes par décalage apparaissent et possèdent une étonnante richesse. Cet exposé se propose de présenter un panorama introductif de ce domaine de recherche.


The BNS sets of fundamental groups of complex algebraic varieties

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 novembre 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vasily Rogov Résumé :

The BNS set of a finitely generated group $\Gamma$ is a certain canonical subset of the space of real additive characters on $\Gamma$. It is a subtle invariant of the group that naturally comes up in different questions of geometric and homological group theory. In the case when $\Gamma$ is the fundamental group of a compact Kähler manifold $X$, Thomas Delzant found a beautiful description of its BNS set in terms of holomorphic fibrations of $X$ over hyperbolic orbifold curves. Using it, he showed that if the fundamental group of a compact Kähler manifold is virtually solvable, it is in fact virtually nilpotent. I will explain the main ideas behind Delzant’s proof and how to generalise his theorems to the case when $X$ is a smooth complex quasi-projective variety. Time permitting, I will also discuss some applications and the case of quasi-Kähler manifolds.


séminaire géométrie complexe et groupes algébriques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 18 novembre 2024 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Raphael Appenzeller Résumé :

Title: Affine buildings from real algebraic geometry

Abstract: The theory of symmetric spaces and the theory of buildings have a rich history of parallels and interactions. We describe symmetric spaces in terms of real algebraic geometry and then replace the real numbers by valued real closed fields to construct an affine Λ-building. A key tool is a transfer principle from model theory.


Lines, twisted cubics on cubic fourfolds and the monodromy of the Voisin map

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 13 novembre 2024 15:00-16:00 Lieu : Salle Döblin Oratrice ou orateur : Franco Giovenzana (Orsay) Résumé :

Abstract: Galois groups have a long history in enumerative geometry, encoding the intrinsic symmetries of enumerative problems. In this talk, after revisiting the core properties of enumerative Galois groups and their connections with monodromy, we focus on the Fano variety F of lines on a cubic fourfold Y, a hyperkähler fourfold, and investigate the monodromy of the Voisin map, a degree 16 self-rational map of F. We show that its Galois group is « as large as possible », and, in doing so, delve into the geometry of the LLSvS variety—a hyperkähler manifold parameterizing twisted cubics on Y. This is based on joint work with L.Giovenzana.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 4 novembre 2024 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :
1 2 3 4 5 6 7 8 9 10 11 12