Séminaire EDP et Applications | Nancy

Exposés à venir

Problème de contrôle optimal avec contraintes d’état en chimiothérapie anticancéreuse et optimisation du traitement

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 décembre 2025 09:15-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David LASSOUNON Résumé :

Le succès de la chimiothérapie dépend à la fois de la stratégie d’administration du médicament et de sa capacité à éliminer les cellules cancéreuses tout en préservant autant que possible les tissus sains. Dans cette présentation, nous nous intéresserons à un problème de contrôle optimal avec des contraintes d’état appliqué à la chimiothérapie des tumeurs invasives, où la dose de médicament agit comme variable de contrôle. Étant donné que le traitement affecte à la fois les cellules tumorales et les tissus sains, l’objectif du
problème de contrôle est de réduire la densité tumorale en contrôlant la dose du médicament. Pour ce faire, nous modélisons l’action thérapeutique à l’aide d’une équation de réaction-diffusion non linéaire décrivant l’évolution d’une tumeur invasive sous traitement. Nous commençons par analyser mathématiquement le problème initial de valeur limite. Nous formulons ensuite le problème de contrôle optimal sous contraintes et en déduisons les conditions nécessaires à l’optimalité. Enfin, à l’aide de simulations numériques en 2D pour un cas de cancer du sein, nous illustrons l’importance des contraintes d’état dans les stratégies de traitement optimales, avant de conclure par quelques perspectives


Régularité d'un problème à frontière libre d'ordre 4

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 décembre 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickael Nahon Résumé :

Je vais présenter un problème d’optimisation à frontière libre analogue au problème de Alt-Caffarelli pour les fonctions biharmoniques. Ce problème apparaît dans différentes questions d’optimisation de forme, dont la minimisation de la trainée d’un obstacle dans un fluide sous contrainte de mesure, la minimisation de la première valeur propre de l’opérateur de Stokes (ou de flambage) dans les domaines du plan, etc.. On s’attend à ce que la frontière libre obtenue soit généralement une union de courbes lisses, pouvant se rejoindre avec un angle d’environ 1.43pi, et je présenterai plusieurs résultats allant dans ce sens.

C’est un travail en collaboration avec Jimmy Lamboley.


Romeo LEYLEKIAN

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Romeo LEYLEKIAN Résumé :

Laure GIOVANGIGLI

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laure GIOVANGIGLI Résumé :

Lucas COEURET

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas COEURET Résumé :

Marc PEGON

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marc PEGON Résumé :

Nicolas VANSPRANGHE

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas VANSPRANGHE Résumé :

Benoit MERLET

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoit MERLET Résumé :

Camille LAURENT

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille LAURENT Résumé :

Abonnement iCal

Archives

About some approximation problems for Sobolev maps to manifolds

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 2 décembre 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Antoine Detaille Résumé :

In a striking contrast with the classical case of real-valued Sobolev functions, a Sobolev map with values into a given compact manifold N need not be approximable with smooth N-valued maps.
This observation, initially due to Schoen and Uhlenbeck (1983), gave rise to a whole area of research concerned with questions related to approximability properties of Sobolev mappings with values into a compact manifold. In this talk, I will give a broad overview of this research direction, its history, the main problems it is concerned with, important known results, as well as some recent contributions.


Analyse d'un modèle simplifié pour la protection optimale d'un champ de culture.

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 novembre 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Aymeric Jacob De Cordemoy Résumé :

Dans ce travail, nous étudions un problème de contrôle optimal impliquant un modèle simplifié pour la protection d’un champ de culture. Plus précisément, nous considérons une protection sur un champ de culture et cherchons à placer des zones d’intervention, représentées par un contrôle, afin de maximiser la protection sur le champ pendant une période donnée. En utilisant une méthode de relaxation, nous prouvons qu’il existe un contrôle qui maximise la protection et, de plus, ce contrôle doit être de type bang-bang. Par ailleurs, avec des hypothèses supplémentaires sur la géométrie du champ de culture, certains résultats sur la forme de l’intervention optimale sont démontrés en utilisant des résultats de comparaison via les symétrisations de Schwarz et de Steiner. Enfin, des simulations numériques sont réalisées pour illustrer ces résultats.


Existence et propriétés de certaines équations du second ordre elliptiques, complètement non linéaires

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 novembre 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Cheikhou Oumar NDAW Résumé :

Dans cet exposé nous présenterons des résultats d’existence, d’unicité et de régularité de solution pour certains problèmes elliptiques du second ordre complètement non linéaires. Les opérateurs sont du modèle du p-Laplacien mais ne peuvent pas se mettre sous forme divergente. Les solutions le seront donc dans le sens des solutions de viscosité.  Dans la première partie, notre démarche sera d’abord de prouver l’existence de sous- et sur- solutions de viscosité. Puis, nous montrerons l’existence de solutions de viscosité à l’aide de la méthode de Perron. Nous prouverons l’unicité de la solution et discuterons sa régularité. Dans la deuxième partie, nous considérerons un opérateur symétriquement radiale (un des opérateurs  de Pucci) et prouverons l’existence et l’unicité de solution radiale dans un anneau. Enfin nous donnerons certains résultats récents et perspectives de recherche sur les propriétés de ces équations.


Memristor drift-diffusion systems for brain-inspired neuromorphic computing

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 4 novembre 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ansgar Jüngel (TU Wien) Résumé :

More than 50 years ago, Moore predicted that the number of transistors on a microchip doubles every two years. This exponential growth is approaching its physical limit, highlighting the need for alternative computing paradigms. One promising avenue is neuromorphic computing, which aims to emulate the structure and function of the human brain. A key enabling technology is the memristor, a nonlinear resistor with memory. Memristors are capable of mimicking the dynamic conductance behavior of biological synapses, making them well-suited for implementing energy-efficient neural networks.

This talk focuses on the mathematical analysis of three-species drift-diffusion equations for memristors. We investigate the existence and boundedness of global-in-time weak solutions. The mathematical difficulties originate from the three-species situation and the different types of boundary conditions. These issues are addressed by combining free energy estimates with local and global compactness arguments. Additionally, we analyze memristor models coupled with electrical networks. One-dimensional numerical simulations capture the characteristic hysteresis behavior in the current-voltage curves, which are a fingerprint for memristive devices.


Unique continuation for semilinear waves and Schrödinger equations under the geometric control condition

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 21 octobre 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Cristóbal Loyola Résumé :

In this talk, I will present recent results on unique continuation for semilinear wave and Schrödinger equations with analytic nonlinearities. After recalling some motivation and classical results on the topic, I will describe a new method, introduced in a joint work with Camille Laurent (CNRS, LMR), that relies on analyticity-in-time regularization in finite time for solutions vanishing on a subset satisfying the Geometric Control Condition (GCC). The proof combines tools from control theory with ideas of Hale and Raugel on the regularity of attractors in dynamical systems. In a more recent work, we refined this approach and applied it to Schrödinger equations on compact manifolds, showing that the GCC suffices for unique continuation, thus answering in the affirmative an open problem posed by Dehman, Gérard, and Lebeau (2006) for the nonlinear case. The method is abstract and can also be applied to study similar questions for other PDEs.


Long-time dynamics of water-wave models

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 octobre 2025 10:45-11:45 Lieu : Salle Döblin Oratrice ou orateur : Roberto Capistrano-Filho (Federal University of Pernambuco, Brasil) Résumé :

Attention, ce séminaire aura lieu en salle Döblin.

Water-wave models play a crucial role in understanding, predicting, and controlling the dynamics of surface water waves across various real-world scenarios, including oceanic waves, waves in lakes and rivers, and those affecting man-made structures. These models integrate mathematical, physical, and numerical frameworks with wide-ranging applications in environmental science, engineering, and maritime industries. In this talk, we will explore key mathematical results for several water-wave models, highlighting their relevance to real-world applications.

 


Nonlocal elliptic equation and the fractional laplacian

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 30 septembre 2025 09:15-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Said Benachour Résumé :

We survey interesting properties of some nonlocal operators that have no analogue for linear second order elliptic PDE.


Sur la régularité $C^1$ pour les équations elliptiques dégénérées dans le plan

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 24 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Xavier Lamy (Université de Toulouse) Résumé :

Je présenterai un travail en collaboration avec Thibault Lacombe, où
nous démontrons que les solutions Lipschitz $u$ de $\mathrm{div}\,
G(\nabla u)=0$ dans un domaine du plan sont $C^1$, pour des champs de
vecteurs strictement monotones $G$ dans $C^0(\mathbb R^2;\mathbb R^2)$
satisfaisant une condition d’ellipticité très générale. Lorsque le champ
de vecteurs $G$ est le gradient d’une fonction strictement convexe,
notre résultat généralise des résultats de De Silva et Savin (Duke Math.
J. 2010). Lorsque $G$ n’est pas un gradient, l’hypothèse d’ellipticité
doit être interprétée correctement, et nous produisons un exemple qui
montre l’effet non trivial de la partie antisymétrique de $\nabla G$.

 


Mesure de Yang Mills sur les surfaces.

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Viet Dang Nguyen (Université de Strasbourg) Résumé :

Il s’agit d’un travail en collaboration avec Guedes-Bonthonneau, Chhaibi, Rivière et To.

Sur une surface riemannienne, nous construisons une mesure de Yang-Mills sur les connexions distributionnelles, avec le processus d’holonomie correspondant. Les ingrédients de notre construction sont: une nouvelle jauge de Morse et l’analyse d’équations de transport pour les flots de gradient en très faible régularité. Nous montrons que notre mesure retrouve les formules de la théorie de Yang-Mills en dimension 2, telles qu’on les trouve dans les travaux de Witten, Driver, Sengupta et Lévy. Enfin, nous expliquons en quel sens notre mesure converge vers le volume symplectique d’Atiyah–Bott–Goldman sur l’espace de modules des connexions plates dans la limite semi-classique.


Optimal grillage structures via minimal stochastic dominance and optimal transport

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Karol Bołbotowski (Université de Varsovie) Résumé :

It is well established that the L_1 optimal transport can be employed to characterize solutions of the Beckmann problem, where one looks for a vector-valued measure of minimal total variation with the constraint that fixes its divergence as the difference of two probabilities distributions. In turn, the Beckmann problem underlies optimal design of heat conductors.

I will talk about a second-order counterpart of this theory, where in the Beckmann problem we have a constraint on the double divergence. In 2D, this problem enjoys the interpretation of optimally designing a ceiling using a grillage structure. I will show that its solutions can be characterized through a new formulation where we look for a probability that dominates the data in the sense of convex order while attaining minimal variance. Afterwards, equivalent optimal transport formulations can be proposed for efficient numerical treatment.

Work in collaboration with Guy Bouchitté.


1 2 3 4 5 6 7 8 9 10 11 12