L'IECL

Séminaire Probabilités et Statistique

Séminaire Probabilités et Statistique

Abonnement iCal : iCal

Exposés à venir

Exposés passés

Temps locaux de processus et limites globales de leurs fonctionnelles additives

26 janvier 2023 10:45-11:45 - Salle Döblin
Oratrice ou orateur : Henri Elad Altman (Freie Universität Berlin)
Résumé :

Nous présenterons des résultats de limites d’échelles de fonctionnelles additives de processus non-markoviens, dont nous décrirons la limite en termes de temps locaux du processus. Une étape clé dans nos preuves consiste en une nouvelle descriptions de fonctionnelles additives à l’aide d’un Lemme de la Couturière Stochastique. Il s’agit de travaux en collaboration avec Khoa Lê (Université de Leeds).


Processus de branchement pour des structures de contacts en épidémiologie

12 janvier 2023 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Vincent Bansaye (École polytechnique)
Résumé :

Les processus de branchement apparaissent dans de nombreux modèles de dynamique des populations, notamment pour décrire des invasions. En particulier, ils interviennent dans la description des premières phases d’une épidémie pour déterminer si le nombre d’infectés va exploser ou non et si oui à quelle vitesse. Dans ces modèles, la description des contacts joue un rôle important.
Après une introduction sur ces problématiques, nous nous focaliserons sur un modèle incluant le traçage des contacts. Dans ce modèle, les individus infectent en population mélangée à taux fixe et l’information sur le contact infectieux est perdu à taux fixe, tandis que le test d’un individu infecté aboutit à l’isolement de la composante connexe associée aux contacts encore connus. Grâce à une propriété d’«éclatement» des arbres récursifs uniformes, nous pourrons réduire le modèle à un processus de croissance fragmentation isolation sur les tailles des composantes.
Nous exploiterions alors des techniques récentes d’analyse quantitative des semi groupes non conservatifs et des processus de branchement associé. Cela permettra d’obtenir des convergences fortes pour décrire la propagation de l’épidémie.
Enfin, nous évoquerons des extensions de ce modèle et la prise en compte d’une structuration spatiale des contacts via de grands graphes aléatoires spatialisés, impliquant des techniques d’homogénéisation stochastique.

Ces travaux sont respectivement des collaborations avec Chenlin Gu (Pékin) et Linglong Yuan (Liverpool), Michele Salvi (Rome) et Elisabeta Vergu (INRAe Jouy).


Non-asymptotic statistical test for the diffusion coefficient in stochastic differential equations

15 décembre 2022 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Anna Melnykova (Université d'Avignon)
Résumé :

We develop a statistical test on the determinant of the diffusion coefficient in a 1 or 2-dimensional stochastic differential equations from discrete observations on a fixed time interval [0,T] sampled with a fixed time step.
We propose a test statistic based on increments of the process which guarantees the control of the level of the test in a non asymptotic setting. In dimension 1, the test density is known explicitly even when the drift is estimated. We construct the test and give conditions under which the Type I and Type II errors can be controlled. In dimension 2, the test statistic has not an explicit density but upper and lower bounds are provided. We then give conditions under which the Type I and Type II errors of the test procedure can be controlled. A numerical study illustrates the properties of the tests for stochastic processes with known or unknown drifts.


Détection d'agrégats spatiaux : des statistiques de balayage pour données multivariées et fonctionnelles

8 décembre 2022 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Lionel Cucala (Université de Montpellier)
Résumé :

Dans ce travail, nous nous intéressons à des observations associées à une localisation spatiale (généralement une position géographique) et nous cherchons à identifier des agrégats spatiaux, i.e. des zones où les observations ont un comportement atypique. Pour cela, nous utilisons des méthodes de balayage spatial.
Après avoir expliqué comment ces méthodes fonctionnent lorsque les observations sont réelles, nous introduisons des statistiques conçues spécifiquement pour le cas multivarié, puis pour le cas fonctionnel.
Ces méthodes sont appliquées sur des jeux de données environnementaux (concentration de métaux polluants) et socio-économiques (taux de chômage).


Nonparametric estimation of the Lévy density

1 décembre 2022 10:45-11:45 - Salle Döblin
Oratrice ou orateur : Ester Mariucci (Université de Versailles)
Résumé :

We consider the problem of estimating the Lévy density of a pure jump Lévy process, possibly of infinite variation, from the high frequency observation of one trajectory. To directly construct an estimator of the Lévy density, we use a compound Poisson approximation and we build a linear wavelet estimator. Its performance is studied in terms of $L_p$ loss functions, $p\geq1$, over Besov balls. To show that the resulting rates are minimax-optimal for a large class of Lévy processes, we propose new non-asymptotic bounds of the cumulative distribution function of Lévy processes with Lévy density bounded from above by the density of an alpha-stable type Lévy process in a neighbourhood of the origin. It is a joint work with Céline Duval.


Théorèmes de turnpike en contrôle stochastique

24 novembre 2022 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Giovanni Conforti (École Polytechnique)
Résumé :

Nous nous intéressons au comportement en temps long des processus de Markov obtenus comme solutions optimales de problèmes d’optimisation stochastique, comme par exemple des problèmes de contrôle stochastique ou des problèmes de transport optimal stochastique. Dans ce contexte, le générateur du processus n’est pas connu en forme explicite et depend de la solution d’une EDP non linéaire, typiquement une équation d’Hamilton-Jacobi-Bellman. Le but de cet exposé est d’expliquer comment on peut définir une notion de mesure invariante, qu’on appelle turnpike dans ce cadre, et d’illustrer les idées de base d’une technique par couplage qui permet d’obtenir des résultats de convergence exponentielle vers le turnpike. Dans un deuxième temps, la question der comment éteindre ces notions et résultats au contrôle McKean-Vlasov sera aussi abordée.


Monitoring the risk of Legionella infection using general Bayesian network updated from temporal measurements in agricultural irrigation with reclaimed wastewater

17 novembre 2022 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Gaspar Massiot (AgroParisTech Nancy)
Résumé :

General Bayesian Networks (GBNs) extend Bayesian networks to the modeling of continuous links in the data.
I will demonstrate the implementation of the GBNs in the context of risk monitoring for Legionella infection from the use of reclaimed wastewater to irrigate agricultural plots.
I will also discuss the use of these networks to evaluate hypothetical scenarios of how failures of the system propagate in the model.


Some asymptotic properties of inhibitive Hawkes process

10 novembre 2022 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Laetitia Colombani (Universität Bern)
Résumé :

Hawkes process was introduced by Hawkes in 1971 and are widely used in many applications (earthquakes, neurons, social network, finance, etc.). This jump process has an intensity which depends on the past. Linear « self-exciting » Hawkes process has been particularly studied and some asymptotic results are well-known.
During my PhD, with Manon Costa and Patrick Cattiaux, I considered non-linear Hawkes processes, which can model self-inhibition and self-excitation. We proved asymptotic properties (law of large numbers, CLT, large deviations), by considering a new point of view for this process: the renewal structure of some Hawkes process leads to a comparison with cumulative processes.
In this talk, I’ll introduce Hawkes processes and cumulative processes. By exhibiting their link, I’ll give an idea of the approach we use to prove asymptotic properties.


A dynamical approach to spanning and surplus edges of random graphs

20 octobre 2022 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Josué Corujo (Université de Strasbourg)
Résumé :

During this talk, we will review some recent advances in the multiplicative coalescent theory and its link to random graphs. The multiplicative coalescent dynamic naturally emerges when one regards the evolution of the connected components in a graph-valued Markov process. We will mainly focus on the breadth-first walk introduced by V. Limic (2019), a Lévy-type process encoding a random forest whose components (trees) are a representation of the multiplicative coalescent. We will then focus on the extension of this construction to account for the surplus edges data, in addition to the spanning edge data. We will present two different graph representations of the multiplicative coalescent, with different advantages and drawbacks, that are discussed in detail. In particular, we will show how to recover a realization of the random graph at a fixed time, and also as a process when the time parameter evolves. We will also discuss the use of these results to understand the scaling limits of near-critical random graphs in the domain of attraction of general eternal multiplicative coalescent.


Marches aléatoires maximales entropiques (MAMEs) et limites d'échelles

13 octobre 2022 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Yoann Offret (Université de Bourgogne)
Résumé :

Les MAMEs sur des graphes sont les MAs qui maximisent l’entropie trajectoriellement. Leurs constructions nécessitent une connaissance globale du graphe dont le rayon spectral et vecteur propre positif associé. A contrario, les MA simples peuvent être vues comme celles maximisant l’entropie localement.

Ces MAs ont été introduites il y a une dizaine d’années par des physiciens et des informaticiens. Elles ont par exemple de meilleures propriétés diffusives dans les réseaux réguliers et de fortes propriétés de localisations dans les milieux irréguliers. Elles ont déjà trouvé de nombreuses applications dans le traitement d’images ou la prédiction de liens dans un graphe notamment.

Je présenterai quelques exemples, notamment des MAMEs sur des graphes infinis et des processus d’exclusions maximaux entropiques, et je parlerai de certaines limites d’échelles de ces processus (Bessel 3, Mouvement Brownien de Dyson…).


Approximation d'EDP dispersives en présence d'un aléa de faible régularité

6 octobre 2022 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Yvain Bruned (Université de Lorraine)
Résumé :

Dans cet exposé, on introduit une nouvelle classe de schémas numériques qui permettent des approximations de faible régularité du second moment de la solution d’une EDP dispersive avec des données initiales aléatoires. Cette quantité joue un rôle important en physique, en particulier dans l’étude de la turbulence des ondes où il faut adopter une approche statistique afin d’obtenir une compréhension approfondie du comportement générique à long terme des solutions aux équations dispersives. Nos schémas utilisent une discrétisation basée sur la résonance après avoir appliqué le théorème de Wick qui produit des diagrammes de Feynman. Pour écrire ces schémas, on introduit des forêts décorées appariées qui sont deux arbres décorés dont les décorations sur les feuilles viennent par paires. La construction du schéma s’inspire du traitement des équations aux dérivées partielles stochastiques singulières via les structures de régularité. Il s’agit d’un travail conjoint avec Yvonne Alama Bronsard et Katharina Schratz.


Sampling Rates for ℓ1-Synthesis

16 juin 2022 10:45-11:45 - Salle Döblin
Oratrice ou orateur : Claire Boyer (Sorbonne Université)
Résumé :

…ou « Combien de projections sous-gaussiennes doit-on faire pour reconstruire un objet parcimonieux dans un dictionnaire redondant ? »

This work investigates the problem of signal recovery from undersampled noisy sub-Gaussian measurements under the assumption of a synthesis-based sparsity model. Solving the l1-synthesis basis pursuit allows to simultaneously estimate a coefficient representation as well as the sought-for signal. However, due to linear dependencies within redundant dictionary atoms it might be impossible to identify a specific representation vector, although the actual signal is still successfully recovered. We study both estimation problems from a non-uniform, signal-dependent perspective. By utilizing results from linear inverse problems and convex geometry, we identify the sampling rate describing the phase transition of both formulations, and propose a « tight » estimated upper-bound.

This is a joint work with Maximilian März (TU Berlin), Jonas Kahn and Pierre Weiss (CNRS, Toulouse).


Le mouvement brownien itéré ad libitum n'est pas le pseudo-arc

9 juin 2022 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Jérôme Casse (Université Paris-Saclay)
Résumé :

À partir d’une suite de mouvements browniens bilatères indépendants, Kiss et Solecki ont construit un continuum (un espace métrique connexe, compact et non vide) aléatoire. Ils ont montré que ce continuum est indécomposable p.s. Avec Nicolas Curien, nous avons montré qu’il n’est pas héréditairement indécomposable p.s., et que ce n’est donc pas le pseudo-arc.

Dans cet exposé, j’expliquerai l’ensemble des termes précédents, la construction de ce continuum aléatoire et je vous expliquerai pourquoi il est indécomposable, mais pas héréditairement indécomposable.


Partitions aléatoires, cartes de grand genre et marche aléatoire sur les permutations

19 mai 2022 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Guillaume Chapuy (Université de Paris)
Résumé :

Je m’intéresserai à un modèle de partitions d’entiers aléatoires qui est une déformation à un paramètre de la très classique mesure de Plancherel du groupe symétrique. Cette déformation, qui a une définition combinatoire explicite, a sa source dans la théorie des nombres de Hurwitz, qui comptent certaines familles de cartes plongées sur des surfaces. La déformation que nous étudions intervient naturellement lorsque l’on s’intéresse à des nombres de Hurwitz (ou des cartes) de très grand genre, un problème qui se formule également dans le langage de la marche aléatoire sur le groupe des permutations engendré par les transpositions. Nous exhibons un phénomène de forme limite d’un type nouveau pour ces partitions, qui a des conséquences pour l’énumération des cartes et pour la marche. La démonstration utilise une méthode dite « entropique » qui mélange un peu de calcul des variations à beaucoup d’estimées combinatoires.
L’exposé sera introductif, sans pré-requis, avec de jolies images.
Travail en commun avec Baptiste Louf et Harriet Walsh.

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. ERC-2016-STG 716083 “CombiTop”).


Réductions d’arbres aléatoires d’expressions en présence d’un élément absorbant

12 mai 2022 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Florent Koechlin (Loria)
Résumé :

En informatique, les expressions aléatoires sont couramment utilisées pour analyser des algorithmes, que ce soit pour étudier leur complexité en moyenne, ou pour générer des benchmarks pour les tester expérimentalement. Généralement, ces approches considèrent les expressions en entrée comme des arbres purement syntaxiques, et font abstraction de leur sémantique, c’est-à-dire de l’objet mathématique représenté par l’expression.

Pourtant, deux expressions différentes peuvent être équivalentes (par exemple « 0*(x+y) » et « 0 » représentent la même expression, l’expression nulle). Ces phénomènes de redondances remettent-ils en question la pertinence de ces analyses et ces tests qui ne tiennent pas compte de la sémantique des expressions ?

Je présenterai comment la distribution uniforme sur les arbres syntaxiques d’expressions devient complètement dégénérée lorsqu’on commence à prendre en compte leur sémantique, dans le cas très simple mais courant où il existe un élément absorbant. Si le temps le permet, j’expliquerai pourquoi la distribution ABR laisse plus d’espoirs.

Il s’agit d’un travail effectué pendant ma thèse, en commun avec Cyril Nicaud et Pablo Rotondo.


Front du modèle FA1f en dimension 1

5 mai 2022 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Aurelia Deshayes (Université Paris-Est Créteil)
Résumé :

Dans cet exposé je présenterai un travail en collaboration avec Oriane Blondel et Cristina Toninelli où nous étudions le modèle FA1f en dimension 1. Il s’agit d’un système de particules en interaction (plus précisément un modèle issu de la physique statistique dit modèle cinétiquement contraint où chaque site met à jour la valeur de son spin si une certaine contrainte locale est satisfaite, ici c’est le fait d’avoir au moins un 0 dans ses voisins). Dans ce travail, nous prouvons, sous certaines conditions, une vitesse linéaire, et des fluctuations gaussiennes, pour le front (i.e. le 0 le plus à gauche lorsque l’on part d’une configuration initiale avec que des 1 à gauche de l’origine et un 0 en l’origine). Ce talk sera l’occasion de présenter les techniques classiques utilisées dans les modèles de croissance aléatoire tels que le processus de contact et de parler de méthode de couplage permettant de passer d’un modèle bien connu a un modèle plus complexe (en particulier non attractif).


Simulation de grands réseaux de neurones

28 avril 2022 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Patricia Reynaud-Bouret (Université Côte d'Azur)
Résumé :

Après avoir présenté les défis numériques actuels pour atteindre des tailles de réseaux de l’ordre du cerveau humain, j’expliquerai pourquoi les processus de Hawkes peuvent être un bon modèle pour passer à l’échelle. J’expliquerai comment les algorithmes classiques peuvent être renouvelés pour y arriver. Une des approches les plus innovantes est basée sur un résultat probabiliste fort : la décomposition de Kalikow, qui permet de tirer au hasard les dépendances spatiales et dans le passé et que nous avons redéfini en temps continu. Elle permet en particulier de simuler un neurone immergé dans un réseau infini sans avoir à simuler le réseau infini. Ce travail est effectué en collaboration avec Eva Löcherbach (mathématicienne, Paris I), Alexandre Muzy (informaticien, Université Côte d’Azur) ainsi que nos étudiants : Cyrille Mascart, Tien Cuong Phi et Paul Gresland.


Modèles d’épidémie en dimension infinie et stratégie de vaccination optimale

7 avril 2022 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Dylan Dronnier (Université de Neuchâtel)
Résumé :

Dans une population homogène, le nombre de reproduction de base, noté R0, est défini comme le nombre moyen de cas directement générés par une personne contagieuse quand tous les autres individus sont sains et sensibles à l’infection. Ce nombre joue un rôle fondamental en épidémiologie puiqu’il constitue un seuil qui détermine si l’épidémie va finir par disparaître (cas R0 ≤ 1) ou, au contraire, devenir endémique (cas R0 > 1).
Imaginons désormais qu’une proportion 1 − 1/R0 de la population est immunisée (en étant vaccinée par exemple). Le nombre moyen d’individus qu’infecte la personne contagieuse est alors divisé par R0. On en déduit que le nouveau nombre de reproduction, qualifié d’effectif dans ce cas, est égal à 1 : l’épidémie finira par disparaître grâce au phénomène d’immunité grégaire. Le nombre 1 − 1/R0, appelé seuil d’immunité de groupe, est souvent utilisé pour evaluer l’efficacité d’une politique de vaccination par les autorités sanitaires.
Quand les contacts dans la population ne sont plus homogènes, le nombre de reproduction de base est défini comme le nombre de cas directement générés par une personne infectée typique quand tous les autres individus sont sains et sensibles à l’infection. Le seuil d’immunité collective 1 − 1/R0 reste encore valide quand on vaccine la population uniformément. Il est cependant naturel de se demander si l’on ne pourrait pas abaisser ce seuil en ciblant certains groupes dans la population.
L’objectif de cette présentation est de proposer une formalisation mathématique de ce problème. Pour modéliser les contacts dans la population, j’utiliserai des objets issus de la théorie des limites des grands graphes. Dans la première partie de l’exposé, je présenterai un modèle hétérogène de type SIS (Susceptible → Infecté → Susceptible) avec vaccination que nous avons introduit récemment. Ce modèle servira de base pour définir les stratégies optimales de vaccination, montrer leur existence et étudier leurs propriétés de stabilité. Enfin, je donnerai une série d’exemples où les solutions du problème de vaccination optimale peuvent être exprimées de manière analytique.

Version PDF avec références


Percolation surcritique sur les graphes à croissance polynomiale

24 mars 2022 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Sébastien Martineau (LPSM, Paris)
Résumé :

La percolation consiste à partir d’un graphe raisonnable G, d’un paramètre p dans [0,1] et à conserver chaque arête indépendamment avec probabilité p, effaçant toutes les autres. On s’intéresse alors aux composantes connexes du graphe ainsi formé (ces composantes sont appelées amas ou clusters). Par exemple, existe-t-il un cluster infini ?

Il existe un paramètre critique p_c, qui dépend du graphe, tel que :
– pour tout p < p_c, il n’y ait presque sûrement aucun cluster infini,
– pour tout p > p_c, il existe presque sûrement (au moins) un cluster infini.

Le régime sous-critique (p < p_c) est bien compris, et ce pour des graphes généraux. Le régime critique (p = p_c) est considérablement plus difficile : il fait l’objet de grands théorèmes et conjectures. C’est au régime restant, le surcritique (p > p_c), que sera dédié cet exposé. Ce régime est plus difficile que le sous-critique mais moins ardu que le régime critique.

Contrairement au régime sous-critique, le régime surcritique est, en un certain sens qu’on précisera, sensible à la géométrie du graphe de départ. Il est donc raisonnable de se restreindre à certaines classes de graphes définies par des hypothèses géométriques. On verra qu’en se restreignant aux graphes dits « à croissance polynomiale », il est possible d’obtenir une compréhension fine du régime surcritique. Cela permet de retrouver par des techniques nouvelles des résultats déjà connus sur le réseau cubique (Grimmett–Marstrand…), ainsi que de couvrir toute une gamme de graphes intéressants (discrétisations anisotropes de Z^d, graphes de Cayley de groupes nilpotents).

Cet exposé porte sur des travaux réalisés en collaboration avec Daniel Contreras et Vincent Tassion.


Une méthode « sans grille » pour la reconstruction d'images

17 mars 2022 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Vincent Duval (INRIA Paris)
Résumé :

Ces dernières années, les méthodes de reconstruction avec a priori de parcimonie (LASSO, Basis Pursuit), très utilisées en statistiques comme en traitement d’images, ont été adaptées pour opérer sur un domaine continu (Beurling Minimal extrapolation, Beurling-LASSO…): on reconstruit alors une somme de masses de Dirac plutôt qu’un vecteur parcimonieux.
Le fait de travailler sur un domaine continu apporte de nombreux avantages: absence de grille de reconstruction et des artefacts de discrétisation associés, analyse plus simple, et algorithmes tirant parti de la structure lisse du problème.

Dans cet exposé, nous nous proposons d’étendre cette démarche à la reconstruction d’objets plus complexes: plutôt que des sources ponctuelles, on veut reconstruire des images constantes par morceaux à l’aide de la régularisation par variation totale du gradient (comme dans les travaux de Rudin, Osher et Fatemi).
Nous montrons qu’en étudiant la boule unité associée, on peut décrire la structure des minimiseurs et définir un algorithme de type Frank-Wolfe « sans grille » pour la résolution du problème.
L’avantage d’une telle méthode est la préservation des bords et l’isotropie des solutions.

Il s’agit d’un travail commun avec Romain Petit et Yohann De Castro.


1 2 3 4 5 6 7 8 9 10 11 12