Exposés à venir
Exposés passés
Multiple Partition Clustering
18 février 2021 10:45-11:45 - Salle de probabilités et statistique virtuelleOratrice ou orateur : Vincent Vandewalle (Université de Lille)
Résumé :
This talk deals with clustering when several latent class variables are considered (multiple partition clustering). Indeed, assuming that all heterogeneity in the data can be explained by one single variable is very strong, and it can be useful to consider that several blocks (or linear combinations) of variables can provide different partitions of individuals. This can reveal new lines of analysis in the data. In this framework, we present two approaches. The first one assumes the existence of several groups of variables, each leading to a different partition of the individuals [1]. It makes it possible to classify the variables into blocks, each producing a specific grouping of individuals. The model assumes the independence between blocks of variables, and in each block the independence of the variables given the cluster. An efficient approach is proposed to search for the blocks of variables as well as performing the estimation of the different partitions of the individuals. The second one assumes the existence of several classifying projections in the data [2]. It makes it possible to obtain different classifying projections and the associated partitions. The model assumes that the data are obtained based on linear combinations of classifying and non classifying variables, where each classifying variable is assumed to follow a specific mixture distribution. The parameters of the models are estimated through a generalized EM algorithm. The behavior of these models will be illustrated in simulated and real data. We will discuss how using such kind of models can give new insight from the data analysis point of view, and can be considered for further investigation. References: [1] Marbac, M. and Vandewalle, V. (2019). “A tractable multi-partitions clustering”. In: Computational Statistics & Data Analysis 132, pp. 167–179. [2] Vandewalle, V. (2020). “Multi-Partitions Subspace Clustering”. In: Mathematics 8.4, p. 597.
Estimation non paramétrique pour des flux de données
11 février 2021 10:45-11:45 - Salle de probabilités et statistique virtuelleOratrice ou orateur : Amir Aboubacar (Université de Lille)
Résumé :
Dans cet exposé, nous nous intéresserons à l’estimation fonctionnelle dans un cadre non paramétrique pour des flux de données. Nous donnerons une définition et une modélisation statistique de ce type de données. Nous présenterons brièvement quelques questions relatives à l’estimation non paramétrique, lorsque l’échantillon d’apprentissage est de nature temporelle, spatiale ou spatio-temporelle et se présente sous forme de flux de données. Nous considérerons le cas d’un modèle statistique dans lequel la variable aléatoire générique est multivariée, circulaire ou de nature fonctionnelle. Des modèles classiques seront revisités dans le contexte de flux de données, et leurs propriétés asymptotiques étudiées, notamment lorsque le processus générateur des données est stationnaire ou localement stationnaire.
Distributions de Tracy-Widom d'ordre supérieur
28 janvier 2021 10:45-11:45 -Oratrice ou orateur : Mattia Cafasso
Résumé :
Dans un article publié en 2018, Le Doussal Majumdar et Schehr ont introduit une famille de distributions, indexées par un entier positif n, qui généralisent la célèbre distribution de Tracy-Widom (GUE) décrivant la loi limite de la plus grande valeur propre d’une matrice aléatoire. Plus récemment, les mêmes distributions sont apparues aussi dans la théorie des partitions aléatoires. Après une bref introduction concernant leur applications, j’illustrerai les résultats que j’ai obtenu en collaboration avec Tom Claeys et Manuela Girotti sur les grandes déviations associées à ces distributions, et leur liens avec les équations de Painlevé.
Quelques développements récents en matière de gestion et de surveillance des ressources naturelles
21 janvier 2021 10:45-11:45 -Oratrice ou orateur : Thibaut Mastrolia
Résumé :
Dans cet exposé, nous étudions l’impact d’une politique de surveillance proposée à un agent exploitant une ressource naturelle renouvelable. Nous adoptons un modèle principal/agent en temps continu dans lequel le principal conçoit un contrat, c’est-à -dire une politique de taxes/compensations, conduisant l’agent à un niveau d’exploitation donné. Pour un contrat donné, nous décrivons d’abord l’effort optimal de l’agent en utilisant la théorie des EDSR. Sous des hypothèses de régularité sur les coefficients, nous exprimons ensuite le contrat optimal comme la solution d’une équation d’Hamilton Jacobi Bellman. Nous étendons ensuite le résultat à des coefficients non réguliers en fournissant des stratégies epsilon optimales à l’aide d’un résultat d’approximation pour la fonction de valeur du régulateur. Travaux conjoints avec Idris Kharroubi (Sorbonne Université) et Thomas Lim (ENSIIE).
Global sensitivity analysis for models described by stochastic differential equations
14 janvier 2021 10:45-11:45 -Oratrice ou orateur : Pierre Étoré
Résumé :
Many mathematical models involve input parameters, which are not precisely known. Global sensitivity analysis aims to identify the parameters whose uncertainty has the largest impact on the variability of a quantity of interest. One of the statistical tools used to quantify the influence of each input variable on the quantity of interest are the Sobol’ sensitivity indices. In this paper, we consider stochastic models described by stochastic differential equations (SDE). We focus the study on mean quantities, defined as the expectation with respect to the Wiener measure of a quantity of interest related to the solution of the SDE itself. Our approach is based on a Feynman-Kac representation of the quantity of interest, from which we get a parametrized partial differential equation (PDE) representation of our initial problem. We then handle the uncertainty on the parametrized PDE using polynomial chaos expansion and a stochastic Galerkin projection.
Talk will be in French
Asymétrie dans la division cellulaire, étude théorique et numérique
7 janvier 2021 10:45-11:45 -Oratrice ou orateur : Benoîte de Saporta
Résumé :
Ce travail est motivé par l’existence d’asymétrie lors de la division cellulaire. Après avoir examiné cette asymétrie sur des données expérimentales, nous introduisons un modèle probabiliste décrivant les divisions successives de cellules et prenant en compte deux types d’asymétrie: une asymétrie physiologique décrivant le fait que deux cellules soeurs peuvent grandir à des vitesses différentes, et une asymétrie morphologique décrivant le fait que les tailles des deux cellules soeurs à la division sont différentes. Dans un premier temps, nous expliciterons le caractère Malthusien de la dynamique, au sens o๠la taille de la population croit exponentiellement tandis que la distribution des tailles converge vers une distribution stable. Dans un second temps, nous étudierons les fluctuation du paramètre Malthusien en fonction des différents paramètres du modèle. Nous montrerons que sous certaines hypothèses, l’asymétrie est optimale au sens Darwinien. Ce travail est toujours en cours et est en collaboration avec Bertrand Cloez (INRAE Montpellier) et Tristan Roget (Univ. Montpellier).
Quelques modèles de régression extrême (2ème tour après gros problème technique)
17 décembre 2020 10:45-11:45 -Oratrice ou orateur : Antoine Usseglio-Carleve
Résumé :
Si estimer la médiane (quantile de niveau 0.5) ou le quartile (quantile de niveau 0.25 ou 0.75) d’une variable aléatoire Y paraît évident lorsque l’on dispose d’un échantillon de taille n, qu’en est-il si le niveau de quantile que l’on cherche à estimer dépasse 1-1/n ? Dans ce cas, l’usage de la classique statistique d’ordre renvoie systématiquement le maximum de l’échantillon, et mène alors à une estimation non-consistante du quantile désiré. Grâce à la théorie des valeurs extrêmes, on trouve dans la littérature des méthodes d’extrapolation pour estimer de tels quantiles. La particularité de ce travail est que la variable d’intérêt Y est impactée par un vecteur de covariables X. L’enjeu est alors d’estimer des quantiles extrêmes de la loi conditionnelle de Y sachant X=x. Pour cela, on propose d’abord une approche de régression purement non-paramétrique, en proposant des estimateurs de quantile et d’expectile (une alternative au quantile que l’on introduira) extrêmes, et en étudiant leurs propriétés asymptotiques. La vitesse de convergence de ces estimateurs se dégradant assez fortement lorsque la taille de la covariable X augmente, on proposera alors quelques modèles sur X et Y permettant de contourner le fléau de la dimension. Quelques applications en assurance ou catastrophe naturelle seront proposées.
Quelques modèles de régression extrême
10 décembre 2020 10:45-11:45 -Oratrice ou orateur : Antoine Usseglio-Carleve
Résumé :
Si estimer la médiane (quantile de niveau 0.5) ou le quartile (quantile de niveau 0.25 ou 0.75) d’une variable aléatoire Y paraît évident lorsque l’on dispose d’un échantillon de taille n, qu’en est-il si le niveau de quantile que l’on cherche à estimer dépasse 1-1/n ? Dans ce cas, l’usage de la classique statistique d’ordre renvoie systématiquement le maximum de l’échantillon, et mène alors à une estimation non-consistante du quantile désiré. Grâce à la théorie des valeurs extrêmes, on trouve dans la littérature des méthodes d’extrapolation pour estimer de tels quantiles. La particularité de ce travail est que la variable d’intérêt Y est impactée par un vecteur de covariables X. L’enjeu est alors d’estimer des quantiles extrêmes de la loi conditionnelle de Y sachant X=x. Pour cela, on propose d’abord une approche de régression purement non-paramétrique, en proposant des estimateurs de quantile et d’expectile (une alternative au quantile que l’on introduira) extrêmes, et en étudiant leurs propriétés asymptotiques. La vitesse de convergence de ces estimateurs se dégradant assez fortement lorsque la taille de la covariable X augmente, on proposera alors quelques modèles sur X et Y permettant de contourner le fléau de la dimension. Quelques applications en assurance ou catastrophe naturelle seront proposées.
Transport optimal martingale et construction de couplages
3 décembre 2020 10:45-11:45 -Oratrice ou orateur : Nicolas Juillet
Résumé :
Le problème du transport optimal de Monge, sous sa forme « Kantorovich », se formule particulièrement bien en termes probabilistes puisqu’il consiste à minimiser l’espérance de la distance (ou d’une autre fonction) de deux variables aléatoires dont les marges, les fameux « déblais » et « remblais », sont des données du problème. En somme il s’agit de trouver un couplage (un transport, une loi jointe) optimal(e). Je parlerai de certains de mes travaux sur la variante « martingale » du problème et des couplages spécifiques (dernièrement d’une infinité indénombrable de lois) qui en ont émergé. Des liens avec le problème de plongement de Skorokhod et certaines représentations de Choquet seront évoqués. Travaux en collaboration avec Mathias Beiglböck, et plus récemment avec Martin Huesmann et Martin Brà¼ckerhoff.
Simulation exacte du temps nécessaire à une diffusion pour sortir d'un intervalle
26 novembre 2020 10:45-11:45 -Oratrice ou orateur : Samuel Herrmann
Résumé :
Les diffusions (famille de solutions d’équations différentielles stochastiques) jouent un rôle primordial en modélisation stochastique avec de nombreux champs d’application. Il est donc essentiel de pouvoir simuler précisément les trajectoires de ces processus et toute variable aléatoire qui y serait liée. Dans cette communication, nous nous intéresserons en particulier au premier instant de sortie d’un intervalle donné. Nous considérons donc (Xt) la solution de dXt = μ(Xt)dt + dBt, X0 ∈ ]a,b[, t≥0, o๠(Bt) est un mouvement brownien et l’objectif se résume à la simulation numérique de Ï„_ab = inf{t≥0: Xt ∉ ]a,b[}. Cette variable aléatoire dépend de la trajectoire du processus et non simplement d’une marginale à un temps fixé, ce qui rend plus compliquée sa simulation numérique. Une première approche consiste à introduire des schémas numériques basés sur la discrétisation temporelle. Ces schemas permettent d’obtenir un squelette de la diffusion et d’en déduire une approximation du temps de sortie. Une autre façon d’appréhender le problème de simulation est d’utiliser une méthode de rejet pour simuler directement et de façon exacte le temps de sortie. C’est cette méthode que je souhaite vous présenter. Une première étude sur la simulation exacte notamment des marginales de diffusion fut introduite par Beskos et Roberts puis complétée par différents travaux par la suite. En ce qui concerne les temps d’arrêt, Cristina Zucca et moi-même avons étudié dans un premier temps les premiers instants de passage des diffusions avant de nous intéresser aux temps de sortie dont la complexité (au niveau des algorithmes) est bien supérieure. Références : https://dev-iecl.univ-lorraine.fr/ProbaStat/covid/downloads/2020-11-26_Samuel_Herrmann_abstract.pdf
Schémas préservant l'asymptotique pour quelques modèles stochastiques
19 novembre 2020 10:45-11:45 -Oratrice ou orateur : Charles-Edouard Bréhier
Résumé :
On considère des systèmes multiéchelles d’Equations Différentielles Stochastiques: quand un paramètre epsilon tend vers 0, la composante lente converge soit vers la solution d’une équation différentielle ordinaire (principe de moyennisation), soit vers la solution d’une équation différentielle stochastique (approximation diffusion). L’objectif d’un schéma préservant l’aymptotique est d’être consistent pour tout epsilon, et d’admettre un schéma limite quand epsilon tend vers 0, qui soit consistent avec l’équation limite au niveau continu.
On verra que pour les modèles EDS la consistance du schéma limite avec l’équation limite n’est pas évidente: par exemple, le schéma limite peut être naturellement associé à une interprétation Itô du bruit, alors que l’équation limite est associée à l’interprétation Stratonovich. On décrira des exemples et contre-exemples de schémas préservant l’asymptotique.
Enfin, on montrera (dans le régime moyennisation) une estimation d’erreur uniforme par rapport à epsilon, en fonction du pas de temps: le schéma est uniformément précis.
Il s’agit d’un travail en collaboration avec Shmuel Rakotonirina-Ricquebourg (Lyon 1).
Graphes de dépendance (pondérés) et normalité asymptotique
12 novembre 2020 10:45-11:45 -Oratrice ou orateur : Valentin Féray
Résumé :
Le but de cet exposé est de présenter la théorie des graphes de dépendance et une extension pondérée que j’ai récemment introduite. Ces théories donne des critères de normalité asymptotique pour des sommes de variables aléatoires faiblement dépendantes. Elle s’applique en particulier aux nombres de sous-structures de taille fixée dans des objets combinatoires aléatoires ou des modèles de physique statistique. L’exposé sera illustré par des exemples de compte de sous-mots dans des mots aléatoires et des applications à un système de particule (SSEP, symmetric simple exclusion process) et au modèle d’Ising.
Marches aléatoires sur des graphes aléatoires à deux communautés
5 novembre 2020 10:45-11:45 -Oratrice ou orateur : Anna Ben-Hamou
Résumé :
Le temps de mélange d’une marche aléatoire sur un graphe est étroitement lié à l’existence de « goulots d’étranglement » dans le graphe : intuitivement, plus il est difficile pour la marche de s’échapper de certains sous-ensembles, plus la marche met du temps à mélanger. Plusieurs résultats montrent que, sur des graphes aléatoires qui sont presque sà»rement des expanseurs et donc n’ont typiquement pas de goulots d’étranglement (par exemple, sur des graphes réguliers uniformes), la marche aléatoire mélange non seulement vite mais de façon très abrupte (on dit qu’elle présente le phénomène de cutoff). Dans cet exposé, nous verrons que l’on peut aussi obtenir des résultats similaires sur des graphes qui ne sont typiquement pas des expanseurs. Nous considérerons des graphes aléatoires munis d’une structure à deux communautés et montrerons qu’il existe un seuil pour la fraction d’arêtes inter-blocs autour duquel la marche bascule d’un régime de mélange rapide avec cutoff à un régime de mélange lent sans cutoff.
Métastabilité pour un système de neurones en interaction
15 octobre 2020 10:45-11:45 -Oratrice ou orateur : Pierre Monmarché
Résumé :
On considère un système de N neurones, dont le potentiel de membrane évolue selon une dynamique de type interaction champ moyen. Plus précisément, pour chaque neurone, ce potentiel décroît à taux constant, et d’autre part est mis à zéro lorsque le neurone se décharge (émet un spike), ce qui entraîne également une augmentation du potentiel de tous les autres neurones. Les spike surviennent à des temps aléatoires, à un taux lamba(u) qui dépend du potentiel de membrane u. Quand lambda(u) est nul en 0 et dérivable alors, quelque soit N, le système s’arrête presque sà»rement en temps fini, c’est-à -dire qu’il n’y aura qu’un nombre fini de spike, suivi d’une décroissance déterministe du système vers 0. On verra que, sous certaine condition, le système est néanmoins métastable, au sens o๠les points suivants sont satisfaits : 1) le système non-linéaire limite (N->infini) converge vers un unique équilibre non nul ; 2) le temps d’extinction d’un système fini de N neurones est exponentiellement grand en fonction de N ; 3) le potentiel moyen du système s’approche rapidement d’une valeur positive constante, et les temps de sortie de voisinages de cette valeur convergent (quand N->infini) vers la loi exponentielle (caractère sans mémoire, imprévisible de ces déviations du comportement limite). Les démonstrations reposent sur des méthodes de couplage.
Population structurée en âge en environnement variable
8 octobre 2020 10:45-11:45 -Oratrice ou orateur : Bertrand Cloez
Résumé :
Dans cet exposé, nous intéressons à des modèles simples de croissance de population. Chaque individu possède une durée de vie aléatoire, indépendante des durées de vie des autres individus, et dont la loi dépend uniquement de la date de naissance de l’individu. A sa mort ou durant son vivant mais de manière Poissonienne, chaque individu donne naissance à de nouveaux individus. Pour ce modèle, nous étudierons ces processus avec deux outils différents : le processus de contour de l’arbre et la théorie des semi-groupes. La première approche permettra d’avoir la loi du nombre d’individus, divers résultats de conditionnement (comportement quasi-stationnaire, loi de l’arbre conditionné à l’extinction ou la non-extinction etc.) ou des limites d’échelles. La deuxième approche permet de montrer une croissance exponentielle pour la taille de la population ainsi que la convergence du profil des âges. Nous finirons l’exposé avec quelques perspectives en statistiques.
Processus d'Ornstein-Uhlenbeck avec seuil : estimation des paramètres
1 octobre 2020 10:45-11:45 -Oratrice ou orateur : Sara Mazzonetto
Résumé :
Un processus d’Ornstein-Uhlenbeck avec seuil est un processus d’autoregression à temps continu. Il suit une dynamique d’Ornstein-Uhnlenbeck au dessus ou dessous d’un seuil fixé, pourtant à ce seuil les coefficients peuvent être discontinus. Nous considérons l’estimation par (quasi)-maximum de vraisemblance des paramètres de dérive, à partir d’observations à temps continu ou discret. Dans le cas ergodique, nous montrons consistance et vitesse de convergence en temps long et haute fréquence pour ces estimateurs. En se basant sur ces résultats, nous développons un test heuristique pour la présence d’un seuil dans la dynamique et nous concluons avec une application à short term US interest rates.
Ceci est un travail avec Paolo Pigato.
Chaînes de Markov à mémoire variable et marches aléatoires persistantes
25 juin 2020 10:45-11:45 -Oratrice ou orateur : Peggy Cénac
Résumé :
Cet exposé présentera une petite zoologie de chaînes de Markov à
mémoire variable, avec des conditions d’existence et unicité de mesure
invariante. Il sera ensuite question de marches aléatoires
persistantes, construites à partir de chaînes de Markov à mémoire non
bornée, o๠les longueurs de sauts de la marche ne sont pas forcément
intégrables. Un critère de récurrence/transience s’exprimant en
fonction des paramètres du modèle sera énoncé. Suivront plusieurs
exemples illustrant le caractère instable du type de la marche
lorsqu’on perturbe légèrement les paramètres. Les travaux décrits dans
cet exposé sont le fruit de plusieurs collaboration avec B. Chauvin, F.
Paccaut et N. Pouyanne ou B. de Loynes, A. Le Ny et Y. Offret et A.
Rousselle.
Marche aléatoire sur les complexes simpliciaux.
18 juin 2020 10:45-11:45 -Oratrice ou orateur : Laurent Decreusefond
Résumé :
Les complexes simpliciaux sont les généralisations des graphes géométriques à des relations non plus binaires mais aussi ternaires ou plus. Ce sont des objets très utilisés en analyse de données topologiques. Nous construisons sur ces objets une nouvelle marche aléatoire qui généralise la marche aléatoire canonique sur un graphe. Nous montrons que son générateur est intimemement au Laplacian du complexe simplicial, qui est une généralisation du Laplacien de graphe. Nous nous intéressons ensuite au processus limite quand la densité du nombre de points tend vers l’infini. Nous montrons comment utiliser cette marche pour localiser les trous de couverture dans un réseau radio.
Approches Bayesiennes pour les protocoles des modèles robustes et discriminatoires
11 juin 2020 10:45-11:45 -Oratrice ou orateur : Vincent Agboto
Résumé :
Skeletal SDEs for CSBPs
4 juin 2020 10:45-11:45 -Oratrice ou orateur : Andreas Kyprianou
Résumé :
We look at at a coupled system of stochastic differential equations that describe an infinite parametric family of genealogical skeletal decompositions of a general continuous state branching process (CSBP), supercritical, critical and subcritical. This puts into a common framework a number of known and new path decompositions of CSBPs, including those which involve continuum random trees, and allow us to connect the notion of Evans-O’Connell immortal particle decomposition to that of the skeletal decomposition. This is joint work with Dorka Fekete (Exeter) and Joaquin Fontbona (U. de Chile).