Exposés à venir
Exposés passés
Pattern extraction from point-cloud datasets and cosmological applications
2 décembre 2021 10:00-11:00 - Salle DöblinOratrice ou orateur : Tony Bonnaire (Université Paris-Saclay)
Résumé :
Point-cloud datasets are ubiquitous in many science and non-science fields. These data are usually coming along with unique patterns that some algorithms are meant to extract and that are linked with the underlying phenomenon that generated the data.
In this presentation, motivated by cosmological problematics, we will focus on two kinds of spatially structured datasets. First, clustered-type patterns in which the datapoints are separated in the input space into multiple groups. We will show that the unsupervised clustering procedure performed with a Gaussian Mixture Model can be formulated in terms of a statistical physics optimisation problem. This formulation enables the unsupervised extraction of many key information about the dataset itself, like the number of clusters, their size and how they are embedded in space, particularly interesting for high-dimensional input spaces where visualisation is not possible.
On the other hand, we will study spatially continuous datasets assuming as standing on an underlying 1D structure that we aim to learn. To this end, we resort to a regularisation of the Gaussian Mixture Model in which a spatial graph is used as a prior to approximate the underlying 1D structure. The overall graph is efficiently learnt by means of the Expectation-Maximisation algorithm with guaranteed convergence and comes together with the learning of the local width of the structure. We then illustrate applications of the algorithm to model and identify the filamentary pattern drawn by the galaxy distribution of the Universe in cosmological datasets.
On the rate of estimation for the stationary distribution of stochastic differential equations with and without jumps
25 novembre 2021 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Chiara Amorino (Université du Luxembourg)
Résumé :
In this talk, we will discuss some results on the estimation of the invariant density associated to a multivariate diffusion X = (Xt)t≥0, assuming that a continuous record of observations (Xt)0≤t≤T is available. We will see that, when X = (Xt)t≥0 is the solution of a stochastic differential equation with Levy-type jumps, it is possible to find the parametric convergence rate 1/T in the monodimensional case and log(T)/T when the dimension d is equal to 2. For d ≥ 3 we find the convergence rate (log(T)/T)γ, where γ is an explicit exponent depending on the dimension d and on β3, the harmonic mean of the smoothness of the invariant density over the d directions after having removed β1 and β2, which are the smallest. Moreover, we obtain a lower bound on the L2-risk for pointwise estimation, with the rate (1/T)γ. In order to fill the logarithmic gap we consider then X = (Xt)t≥0 as a solution to a continuous stochastic differential equation. One (surprising) finding is that the convergence rate depends on the fact that β2 < β3 or β2 = β3. In particular, we show that kernel density estimators achieve the rate (log(T)/T)γ in the first case and (1/T)γ in the second. Finally, we prove a minimax lower bound on the L2-risk for the pointwise estimation with the same rates (log(T)/T)γ or (1/T)γ, depending on the value of β2 and β3.
On probabilistic generalizations of the Nyman-Beurling criterion for the Zeta function
18 novembre 2021 10:45-11:45 - Salle DöblinOratrice ou orateur : Sébastien Darses (Aix-Marseille Université)
Résumé :
One of the seemingly innocent reformulations of the terrifying Riemann Hypothesis (RH) is the Nyman-Beurling criterion: The indicator function of (0,1) can be linearly approximated in a L^2 space by dilations of the fractional part function. Randomizing these dilations generates new structures and criteria for RH, regularizing very intricate ones. One other possible nice feature is to consider polynomials instead of Dirichlet polynomials for the approximations. How then are the huge difficulties reallocated? The answers are quite surprising!
The talk will be very accessible, especially for graduate students.
Joint work with F. Alouges and E. Hillion.
CFTP pour les automates cellulaires probabilistes uni-dimensionnels exponentiellement ergodiques
21 octobre 2021 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Jean Bérard (Université de Strasbourg)
Résumé :
Dans cet exposé, on construit, pour tout automate cellulaire probabiliste uni-dimensionnel exponentiellement ergodique et possédant une propriété de taux positifs, un flot CFTP (« coupling from the past ») localement défini. Plusieurs conséquences de cette construction sont discutées. (Travail exposé dans l’article arXiv:2106.07219).
Analyse et interprétation climatologique de l'évolution des températures moyennes mondiales depuis 1880
14 octobre 2021 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Eric Zeltz
Résumé :
Je montre comment à partir d’une étude approfondie statistique et probabiliste d’une base de données de températures moyennes mondiales, j’ai découvert des comportements climatologiques sans doute très difficilement accessibles par les techniques usuelles utilisées en climatologie.
Diffusions arising from the ordered Chinese Restaurant Process
7 octobre 2021 10:45-11:45 - Salle DöblinOratrice ou orateur : Kelvin Rivera-Lopez (IECL, Nancy)
Résumé :
In a recent paper, Leonid Petrov showed that the up-down chains associated to the Chinese Restaurant Process (CRP) have a scaling limit – namely, a two-parameter family of diffusions that extend the one-parameter infinitely-many-neutral-alleles diffusions of Ethier and Kurtz. There has since been considerable interest in constructing ordered analogues of Petrov’s diffusions, and it is conjectured that an ordered analogue of the up-down chains will give rise to such an object. In this talk, I’ll discuss my resolution of this conjecture (joint with Douglas Rizzolo). Our approach is mainly inspired by Petrov’s work, and involves using quasisymmetric functions to describe the transition operators.
Minimax optimality, testing, differential privacy
30 septembre 2021 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Joseph Lam (IECL, Nancy)
Résumé :
This presentation is a summary of my PhD work. I focus on the topic of hypothesis testing, extensively studied in statistics and theoretical computer science.
I start with presenting the classical identity testing problem, in which an independent sample set X ~ q is given and one would like to determine whether q=p for some fixed known p. This problem is very related to that of estimating a distribution from a given sample set. The study of testing is relevant, because for the same fixed sample size, it is possible to test against a distribution up to a smaller separation distance than what is possible in estimation. This will give me the opportunity to describe the minimax framework which proves the theoretical optimality of statistical methods in the worst case.
I will refine the study of minimax identity testing by adding a local differential privacy condition and the interest will be in the quantitative effect of ensuring privacy. The presentation will largely be on the topic of privacy, because it bears similarities with ensuring fairness conditions.
We will also shortly consider the neighboring problem of closeness testing, where the goal remains to determine whether p=q, but only an independent sample set Y ~ p is given instead of p directly. In this context, we will go beyond a simple worst-case analysis and develop instance optimal results instead. This will highlight the interplay between one-sample testing and two-sample testing, the latter being a harder problem.
High order heat-type equations and random walks on the complex plane
17 juin 2021 10:45-11:45 -Oratrice ou orateur : Sonia Mazzucchi (Università di Trento, Italie)
Résumé :
Reduction of a stochastic hybrid model of gene expression using Large deviations theory
10 juin 2021 10:45-11:45 -Oratrice ou orateur : Elias Ventre (LBMC, ENS Lyon)
Résumé :
Differentiation is the process whereby a cell acquires a specific phenotype, by differential gene expression as a function of time. This is thought to result from the dynamical functioning of an underlying Gene Regulatory Network (GRN). The precise path from the stochastic GRN behavior to the resulting cell state is still an open question. In this presentation, we detail a methodology to reduce a mechanistic model characterizing the evolution of a cell by a system of piecewise deterministic Markov processes (PDMP), to a discrete coarse-grained model on a limited number of cell types, defined as the basins of attraction of the deterministic limit. The transitions between the basins in the weak noise limit can be determined by the unique solution of an Hamilton-Jacobi equation under a particular constraint, which corresponds to the rate function associated to a Large Deviations Principle for the PDMP. We develop a numerical method for approximating the coarse-grained model parameters, and show its accuracy for a toggle-switch network. We deduce from the reduced model an analytical approximation of the stationary distribution of the PDMP system, which appears as a Beta mixture.
Systèmes de processus de renforcement en interaction
3 juin 2021 10:45-11:45 -Oratrice ou orateur : Pierre-Yves Louis (IMB, Dijon)
Résumé :
Les modèles d’urnes sont utilisés dans de nombreuses applications et sont un exemple fondamental de processus stochastiques de renforcement. En partant de ces modèles, nous nous intéresserons à plusieurs familles de systèmes (finis) de processus de renforcement. Différents résultats sur le comportement collectif en temps long seront présentés. La présence/absence de synchronisation sera discutée, ainsi que les vitesses de convergence en fonction de différents régimes de paramètres. Cet exposé se fonde sur des travaux en collaboration avec I. Crimaldi, P. Dai Pra, I. Minelli et M. Mirebrahimi.
Langevin processes in bounded-in-position domains: application to quasi-stationary distributions
27 mai 2021 10:45-11:45 -Oratrice ou orateur : Mouad Ramil (CERMICS, Ecole des Ponts ParisTech)
Résumé :
Quasi-stationary distributions can be seen as the first eigenvector associated with the generator of the stochastic differential equation at hand, on a domain with Dirichlet boundary conditions (which corresponds to absorbing boundary conditions at the level of the underlying stochastic processes). Many results on the quasi-stationary distribution hold for non degenerate stochastic dynamics, whose associated generator is elliptic. The case of degenerate dynamics is less clear. In this work, together with T. Lelièvre and J. Reygner (Ecole des Ponts, France) we generalize well-known results on the probabilistic representation of solutions to parabolic equations on bounded domains to the so-called kinetic Fokker-Planck equation on bounded domains in positions, with absorbing boundary conditions. Furthermore, a Harnack inequality, as well as a maximum principle, is provided for solutions to this kinetic Fokker-Planck equation, as well as the existence of a smooth transition density for the associated absorbed Langevin dynamics. The continuity of this transition density at the boundary is studied as well as the compactness, in various functional spaces, of the associated semigroup. This work is a cornerstone to prove the consistency of some algorithms used to simulate metastable trajectories of the Langevin dynamics, for example the Parallel Replica algorithm.
Principe de grande déviation pour les courants et le flot maximal en percolation de premier passage
20 mai 2021 10:45-11:45 -Oratrice ou orateur : Barbara Dembin (LPSM, Paris)
Résumé :
Considérons la percolation de premier passage dans le réseau renormalisé Z^d/n pour d>=2 : à chaque arête e, on associe une capacité aléatoire c(e)>=0 de telle sorte que la famille (c(e))_e soit indépendante et identiquement distribuée selon une loi G. On peut interpréter cette capacité comme un débit maximal, i.e., la quantité maximale d’eau pouvant traverser l’arête par unité de temps. Considérons un domaine borné et connecté Ω de R^d et deux ensembles disjoints du bord de Ω : un part lequel l’eau peut entrer (la source) et un part lequel l’eau peut sortir (le puits). Nous nous intéressons au flot maximal : la quantité maximale d’eau pouvant entrer dans Ω par unité de temps. Un courant est une fonction sur les arêtes qui décrit la façon dont l’eau circule dans Ω. Dans cet exposé, nous présenterons un principe de grande déviation pour les courants et nous en déduirons par un principe de contraction un principe de grande déviation pour le flot maximal dans Ω.
Travail en collaboration avec Marie Théret.
Strong laws for growth-fragmentation processes with bounded cell size
6 mai 2021 10:45-11:45 -Oratrice ou orateur : Alex Watson (University College London)
Résumé :
A growth-fragmentation is a stochastic process representing cells with continuously growing mass, which experience sudden splitting events. Growth-fragmentations are used to model cell division and protein polymerisation in biophysics. It is interesting to ask whether these processes converge toward an equilibrium, in which the number of cells is growing exponentially and the distribution of cell sizes approaches some fixed asymptotic profile. In this work, we study a process in which the growth and splitting of an individual cell is largely independent of its mass, with the exception that the mass is bounded above, so it cannot exceed a given constant. We give precise conditions to ensure that, almost surely, the process exhibits this equilibrium behaviour, and express the asymptotic profile in terms of an underlying Lévy process.
This is joint work with Emma Horton (Inria Bordeaux).
Factorisations de genre fixé d'un grand cycle
8 avril 2021 10:45-11:45 - Salle de probabilités et statistique virtuelleOratrice ou orateur : Paul Thévenin (Uppsala University)
Résumé :
Une factorisation d’une permutation est une façon d’écrire cette permutation comme un produit de transpositions. L’ensemble des factorisations du n-cycle (12…n), particulièrement étudié en raison notamment de ses liens avec la combinatoire algébrique, est en bijection avec un ensemble de cartes à n sommets, dont le genre est donné par le nombre de transpositions de la factorisation. J’exposerai un algorithme inspiré de cette bijection et permettant de générer une factorisation aléatoire uniforme du n-cycle dont la carte correspondante est de genre fixé.
Je montrerai également comment cet algorithme permet de décrire la limite, en un certain sens, d’une factorisation uniforme de genre donné.
Travail en collaboration avec Valentin Féray et Baptiste Louf.
Multilevel Picard approximations for high-dimensional semilinear parabolic partial differential equations
1 avril 2021 10:45-11:45 - Salle de probabilités et statistique virtuelleOratrice ou orateur : Thomas Kruse (Justus Liebig University, Giessen)
Résumé :
Rebondissements de mouvements browniens asymétriques
25 mars 2021 09:15-10:15 - Salle de probabilités et statistique virtuelleOratrice ou orateur : Miguel Martinez
Résumé :
Mind2Mind: Transfer learning for GANs
25 mars 2021 10:45-11:45 - Salle de probabilités et statistique virtuelleOratrice ou orateur : Yaël Frégier
Résumé :
In this talk, we will present a new approach to the problem of transfer learning for GANs. It allows training deep neural networks with limited computational resources in the specific context of generative models. We prove rigorously, within the framework of optimal transport, a theorem that ensures the convergence of the learning of the transferred Wasserstein GAN. It is joint work with Jean-Baptiste Gouray
Problèmes de ruine, équation de la chaleur sur un triangle, solutions extrémales et jeux à champs moyen
18 mars 2021 09:15-10:15 - Salle de probabilités et statistique virtuelleOratrice ou orateur : Nabil Kazi-Tani (ISFA, Université Lyon 1)
Résumé :
Je donnerai dans cet exposé deux exemples de problèmes de contrôle stochastique consistant à optimiser un critère discontinu, dans lesquels d’une part, la fonction valeur peut être obtenue explicitement et d’autre part, le contrôle optimal est extrémal (contrôle bang-bang). Je considèrerai d’abord le problème consistant à minimiser une probabilité de ruine en temps fini pour des martingales browniennes. En calculant explicitement les probabilités de sorties d’un triangle rectangle par le mouvement brownien (en utilisant des résultats connus sur les processus de Bessel), il est possible de montrer que la fonction valeur du problème de contrôle est une solution régulière d’une EDP de la chaleur avec des conditions aux bords discontinues. J’expliquerai en quoi ce problème est utile en assurance, en biologie, ou encore en science politique. Dans un 2e temps, je montrerai comment obtenir des résultats similaires dans des problèmes de jeux différentiels à N joueurs, dont je prendrai une approximation de type champs moyen dans le régime où N est grand. Cet exposé s’appuie sur des travaux en collaboration avec Stefan Ankirchner (Jena), Christophette Blanchet-Scalliet (Lyon), Julian Wendt (Jena) et Chao Zhou (Hong Kong).
Nouveaux développements en statistique grâce à la méthode de Stein
18 mars 2021 10:45-11:45 - Salle de probabilités et statistique virtuelleOratrice ou orateur : Christophe Ley (Ghent University)
Résumé :
La méthode de Stein est un outil bien connu en probabilités pour construire des bornes précises sur des distances probabilistes. Initialement proposée pour l’approximation gaussienne, elle a par la suite été étendue à bon nombre de lois comme la loi de Poisson, binomiale, exponentielle, variance Gamma, et bien d’autres. Ces dernières années, cette méthode probabiliste a aussi connu un réel succès en statistique et machine learning, et a permis des développements théoriques et computationnels assez spectaculaires. Dans cet exposé, je vais donner un aperçu sur ces développements, avec un focus particulier sur une nouvelle mesure de l’impact du choix de la prior distribution en statistique bayésienne.
Automates cellulaires préservant un sous-shift
11 mars 2021 09:15-10:15 - Salle de probabilités et statistique virtuelleOratrice ou orateur : Samuel Petite (LAMFA, Amiens)
Résumé :
Les automates cellulaires forment une classe riche de systèmes dynamiques sur l’ensemble des suites symboliques. Ils servent notamment de modèles simplifiés en informatique, pour le calcul parallèle, et en physique statistique, pour étudier l’évolution de systèmes de particules. Un problème classique consiste alors à étudier les environnements laissés stable par l’évolution d’un ou plusieurs automates et en particuliers leurs mesures invariantes ou les distributions asymptotiques des itérés des automates sur une configuration aléatoire. Nous présenterons dans cet exposé plusieurs restrictions sur ces automates en fonction de la complexité de l’environnement.