Séminaires

Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :

  • Séminaire de géométrie différentielle : 14h-15h
  • Séminaire de géométrie complexe : 15h30-16h30

Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 décembre 2024 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazottes Résumé :

Formalisme thermodynamique à basse température, dynamique symbolique et quasi-cristaux

L’étude de modèles simples de physique statistique sur le réseau $\mathbb{Z}^d$, visant à comprendre la transition du désordre vers un ordre périodique ou quasi-périodique quand la température est suffisamment basse, nécessite une interconnexion entre le formalisme des mesures de Gibbs et des états d’équilibre, la dynamique symbolique multidimensionnelle, les pavages et l’informatique théorique. En particulier, des espaces associés aux marginales finies-dimensionnelles des mesures invariantes par décalage apparaissent et possèdent une étonnante richesse. Cet exposé se propose de présenter un panorama introductif de ce domaine de recherche.


Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 9 décembre 2024 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickaël Nahon Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 janvier 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 février 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Archives

Volume des formes de Clifford-Klein compactes

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 8 février 2016 14:00-15:00 Lieu : Oratrice ou orateur : Nicolas Tholozan Résumé :

Une forme de Clifford–Klein compacte d’un espace homogène $G/H$ est un quotient de cet espace par un sous-groupe discret $Gamma$ de $G$ agissant proprement discontinà»ment et cocompactement sur $G/H$. Lorsque $G$ et $H$ sont semi-simples, l’action de $G$ sur $G/H$ préserve une métrique pseudo-riemannienne, et en particulier une forme volume. J’expliquerai pourquoi le volume d’une forme de Clifford–Klein compacte $Gamma backslash G/H$ peut se calculer en intégrant sur la classe fondamentale de $Gamma$ une forme $G$-invariante $omega_H$ sur l’espace symétrique riemannien $G/K$. Dans plusieurs cas, cela permet de montrer que ce volume est rigide. De plus, ce résultat fournit une nouvelle obstruction à  l’existence de quotients compacts de certains espaces homogènes.


Progrès récents dans l'étude des sous-variétés coisotropes des variétés holomorphes symplectiques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 1 février 2016 15:30-16:30 Lieu : Oratrice ou orateur : Gianluca Pacienza Résumé :

Claire Voisin a récemment proposé une nouvelle approche pour l’étude du groupe de Chow des 0-cycles sur les variétés holomorphes symplectiques. Les objets clé dans cette approche sont les sous-variétés coisotropes de telles variétés. Dans l’exposé je présenterai des résultats portant sur l’existence et la théorie des déformations de sous-variétés coisotropes des variétés holomorphes symplectiques, obtenus dans une séries de travaux en collaboration avec F. Charles, Ch. Lehn et G. Mongardi.


Conjecture de la négativité bornée et constantes de Harbourne des surfaces abéliennes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 janvier 2016 15:30-16:00 Lieu : Oratrice ou orateur : Xavier Roulleau Résumé :

La conjecture de la négativité bornée a été formulée par l’école italienne dès le début de la théorie des surfaces algébriques. Elle prévoit que pour une surface projective complexe lisse X, il existe une constante b telle que pour toute courbe C (réduite) sur X l’auto-intersection de C vérifie C^2 >b.
Même si on sait que cette conjecture est vérifiée par une surface donnée (par exemple le plan), on ne sait en général rien dire pour un éclatement (multiple) de cette surface. Les constantes de Harbourne ont été récemment introduites pour aborder cette question.
Dans cette exposé nous ferons le point sur les connaissances actuelles et présenterons nos résultats sur les surfaces abéliennes contenant des courbes elliptiques.


Conformally flat hypersurfaces and helicoidal flat surfaces in space forms

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 12 janvier 2016 14:00-15:00 Lieu : Oratrice ou orateur : Joà£o Paulo dos Santos Résumé :

It is known that conformally flat hypersurfaces in four dimensional space forms are associated with solutions of a system of equations, known as Lam ́e’s system. In this talk, conformally flat hypersurfaces associated with invariant solutions under the symmetry group of the Lam ́e’s system are considered. Namely, three classes of solutions are presented: a) solutions given by Jacobi elliptic functions, that correspond to a new class of conformally flat hypersurfaces; b) solutions given by hyperbolic functions, that correspond to conformally flat hypersurfaces generated by helicoidal flat surfaces in the hyperbolic three space; c) solutions given by trigonometric functions, that correspond to conformally flat hypersurfaces generated by helicoidal flat surfaces in the standard three sphere. For such helicoidal flat surfaces, a classification is given in terms of their first and second fundamental forms for special parametrizations.


Endomorphismes permutables de $mathbb P^2$

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 11 janvier 2016 14:00-15:00 Lieu : Oratrice ou orateur : Lucas Kaufmann Résumé :

On considère le problème de décrire les pairs d’endomorphismes holomorphes permutables (c.a.d. qui commutent) de l’espace projective complexe. Le cas de dimension $1$ est classique et a été classifié par Fatou, Julia et Ritt sous la condition

$f^n neq g^m$ pour tout $n,m geq 1.$ (1)

En dimension quelconque un théorème de Dinh et Sibony montre que, si $f$ et $g$ sont des endomorphismes permutables de $mathbb P^k$ et leurs degrés satisfont $d_f^n neq d_g^m$ pour tout $n,m geq 1$ alors $f$ et $g$ sont induits par des applications affines de $mathbb C^k$ après un quotient par un groupe discret de transformations affines. Leur conclusion n’est plus vraie si on remplace la condition sur les degrés par la condition plus faible $f^n neq g^m$ pour tout $n,m geq 1$. Un contre exemple existe en dimension $k geq 3$.

Le but de cet exposé est de présenter une description des endomorphismes permutables du plan projectif sous la condition plus faible (1), ce qui complète la classification en dimension 2.


Yamabe-type invariants for open manifolds

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 8 décembre 2015 14:00-15:00 Lieu : Oratrice ou orateur : Nadine Grosse Résumé :

In the work of Ammann, Dahl and Humbert it has turned out that the Yamabe invariant on closed manifolds is a bordism invariant below a certain threshold constant. A similar result holds for a spinorial analogon. These threshold constants are characterized through Yamabe-type equations on products of spheres with rescaled hyperbolic spaces. We give variational characterizations of these threshold constants, and our investigations lead to an explicit positive lower bound for the spinorial threshold constants. This is joint work with Bernd Ammann, arXiv:1502.05232.


Surfaces aléatoires finies et infinies

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 24 novembre 2015 14:00-15:00 Lieu : Oratrice ou orateur : Jean Raimbault Résumé :

On s’intéressera d’abord à  différents modèles aléatoires de surfaces de Riemann compactes (ou de volume fini), en particulier à  leurs propriétés géométriques quand le genre tend vers l’infini. Ceci servira aussi de motivation pour introduire des modèles aléatoires de surfaces pointées de type infini.


Construction of Zollfrei metrics on $3$-manifolds

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 17 novembre 2015 14:00-15:00 Lieu : Oratrice ou orateur : Stephan Suhr Résumé :

Guillemin calls a compact Lorentzian $3$-manifold « Zollfrei » if the geodesics flow on the nonzero lightlike vectors induces a fibration by circles (especially all lightlike geodesics are closed). He conjectured that these metric can only exist on $3$-manifolds covered by $S^2times S^1$. I will explain counterexamples on every nontrivial circle bundle over a closed surface. If time permits I will discuss what additional assumptions imply the conjecture and hint at what is the right conjecture in the general case.


Structures de Hodge lacées et fibrés harmoniques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 novembre 2015 14:00-15:00 Lieu : Oratrice ou orateur : Jeremy Daniel Résumé :

La théorie de Hodge non-abélienne étudie la correspondance entre fibrés
plats et fibrés de Higgs sur une variété projective, correspondance
établie via la notion intermédiaire de fibré harmonique. On expliquera
comment la donnée d’un fibré harmonique est équivalente à  la donnée d’une
variation de structures de Hodge lacées, ces structure étant des analogues
en dimension infinie des structures de Hodge. Cette approche permet en
particulier d’associer une application des périodes à  tout fibré
harmonique, et ainsi d’imiter les techniques de théorie de Hodge
classique.


Semi-positivité du cotangent logarithmique et conjecture de Shafarevich-Viehweg [d'après Campana, Păun, Taji,...]

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 2 novembre 2015 14:00-15:00 Lieu : Oratrice ou orateur : Benoît Claudon Résumé :

Démontrée par A. Parshin et S. Arakelov au début des années 1970,
la conjecture d’hyperbolicité de Shafarevich affirme qu’une famille de
courbes de genre g ≥ 2 paramétrée par une courbe non hyperbolique
(c’est-à -dire isomorphe à  $mathbb P^1$, $mathbb C$, $mathbb C^*$ ou une courbe elliptique)
est automatiquement isotriviale : les modules des fibres lisses sont
constants. En dimension supérieure, les travaux de E. Viehweg sur les
modules des variétés canoniquement polarisées l’ont amené à  formuler la
généralisation suivante : si une famille de variétés canoniquement
polarisées (paramétrée par une base quasi-projective) est de variation
maximale, alors la base est de log-type général. Il s’agit donc d’une
forme d’hyperbolicité algébrique attendue pour l’espace des modules. En
adaptant des résultats dus à  Y. Miyaoka sur la semi-positivité
générique du fibré cotangent au cadre logarithmique (et orbifolde), F.
Campana et M. Păun ont récemment obtenu une réponse positive à  la
conjecture de Viehweg. Cet exposé sera également l’occasion de
donner un aperçu de la classification des orbifoldes développée par
F. Campana. C’est d’ailleurs dans ce cadre que s’énonce la forme
optimale de la conjecture de Viehweg démontrée par B. Taji.