Séminaires

Exposés à venir

Estimations explicites pour les sommes de fonctions arithmétiques, ou l'utilisation optimale de l'information spectrale finie sur les séries de Dirichlet

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 11 décembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Harald Helfgott (CNRS, IMJ) Résumé :
Travail en collaboration avec A. Chirre.

Soit $F(s) = \sum_n a_n n^{-s}$ une série de Dirichlet. Supposons que l’on dispose d’un prolongement analytique de $F(s)$, ainsi que d’informations sur les pôles de $F(s)$ pour $|\Im s|\leq T$, où $T$ est une grande constante. Quelle est la meilleure manière d’exploiter ces données pour obtenir des estimations explicites des sommes $\sum_{n\leq x} a_n$?

Le cas de la fonction de Mertens $M(x) = \sum_{n\leq x} \mu(n)$ illustre à quel point cette question de base est restée ouverte. Il serait naturel de penser que borner $M(x)$ revient essentiellement à estimer $\psi(x) = \sum_{n\leq x} \Lambda(n)$. Pourtant, des bornes explicites assez satisfaisantes pour $\psi(x)-x$ sont connues depuis longtemps, alors que l’obtention de bonnes bornes pour $M(x)$ était un problème notoirement récalcitrant.

Nous donnons une méthode optimale pour utiliser l’information spectrale sur les pôles de $F(s)$ avec $|\Im s|\leq T$. Elle permet en particulier d’obtenir des bornes sur la fonction de Mertens nettement plus fortes que celles de la littérature, ainsi qu’une amélioration substantielle des estimations de pour des valeurs modérées de .

Nous utilisons des fonctions de type « Beurling–Selberg » : plus précisément, un approximant optimal dû à Carneiro–Littmann, ainsi qu’un majorant/minorant optionnel dû à Graham–Vaaler. Notre procédure présente des points de contact avec le théorème de Wiener–Ikehara ainsi qu’avec des travaux de Ramana et Ramaré, mais ne dépend d’aucun résultat de la littérature classique sur les estimations explicites en théorie analytique des nombres.

 


Fréquences de lettres dans des suites auto-descriptives

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 18 décembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Mai Linh Tran-Cong Résumé :

La suite d’Oldenburger-Kolakoski est l’unique mot infini sur l’alphabet {1,2} qui commence par un « 1 » et est point fixe de l’opérateur de dérivation. En 1991, M.S. Keane conjecture que cette suite admet une fréquence d’1/2 pour la lettre « 1 ».

Les suites dites « auto-descriptives » sont une généralisation du mot d’Oldenburger-Kolakoski. Ces suites sont en bijection naturelle avec l’ensemble de toutes les suites sur l’alphabet {1,2} : une suite auto-descriptive est dite « dirigée » par son homologue naturelle sur {1,2}. Est-il possible d’inférer les fréquences de lettres de l’une à partir de l’autre ?

Je présenterai dans cet exposé deux approches à cette question : l’une probabiliste (Boisson, Jamet, Marcovici — 2024), l’autre analytique (Akiyama, Jamet, Marcovici, T.C. — 2024).


Towards an asymptotic equivalence of Patterson–Sullivan and Wigner distributions for hyperbolic surfaces

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 8 janvier 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Guendalina Palmirotta (Paderborn) Résumé :
There is a curious relation between two kinds of phase space distributions associated to eigenfunctions of the Laplacian on a hyperbolic surface: Patterson-Sullivan distributions, which are invariant under the geodesic flow, and Wigner distributions, which arise in quantum chaos and are invariant under the wave group.
In this talk, we will describe these two distributions and generalise them on convex-cocompact hyperbolic surfaces. Then, we will show how they are asymptotically intertwined.
This is a joint work with Benjamin Delarue (Universität Paderborn).

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 janvier 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cedric Pilatte (Oxford) Résumé :

Antonio Lopez-Neumann (titre à venir)

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 22 janvier 2026 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Antonio Lopez-Neumann (Jussieu) Résumé :

Miquel Cueca Ten (titre à venir)

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 29 janvier 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Miquel Cueca Ten (KU Leuven) Résumé :

Jan Pulmann — titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 février 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jan Pulmann (Charles University) Résumé :

Job Kuit — titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 février 2026 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Job Kuit (Paderborn) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 février 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Maud Szusterman (Ecole Polytechnique) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Kilian Lebreton (IECL) Résumé :

Effie Papageorgiou (titre à venir)

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 mars 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Effie Papageorgiou Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Emma Weschler (Lille) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 26 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Michel Balazard (Institut de Mathématiques de Marseille) Résumé :

Archives

Répartition des nombres premiers dans des suites d'entiers

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 31 mars 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cécile Dartyge (IECL) Résumé :

Répétition du séminaire Bourbaki du vendredi 1er avril.


Formule des traces relative et pseudocoefficients pour certains espaces symétriques réels

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 31 mars 2022 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pascale Harinck (Polytechnique) Résumé :

(Travail commun avec P. Delorme). Soit $G$ un groupe de Lie réductif réel, muni d’une involution $\sigma$ et $\Gamma$ un sous-groupe discret cocompact. Nous établissons une formule des traces relative, en lien avec $\Gamma$ et $H=G^\sigma$, exprimant la somme de  certaines intégrales orbitales de $f\in C_c^\infty(G)$ en terme de  coefficients généralisés de représentations unitaires irréductibles de $G$. Lorsque $G/H$ admet une série discrète relative $\pi_0$, l’existence de pseudocoefficient relatif pour $\pi_0$ à support « petit » implique, via la formule des traces relative,  que $\pi_0$ intervient dans la décomposition spectrale de $L^2(\Gamma\backslash G)$. Nous étudions l’existence de tels pseudocoefficients pour les espaces hyperboliques et les espaces symétriques de type $G(\mathbb{C})/G(\mathbb{R})$.


Suite

Catégorie d’évènement : Groupe de travail Géométrie non commutative Date/heure : 25 mars 2022 00:00-00:00 Lieu : Oratrice ou orateur : Hervé Oyono-Oyono Résumé :

Un théorème central limite pour les partitions des entiers en puissances petites

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 24 mars 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Manfred Madritsch (IECL) Résumé :


Isolated unitary unramified representations and the Dirac inequality

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 24 mars 2022 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Dan Ciubotaru (Oxford) Résumé :

I will present several applications of the Dirac inequality to the determination of unitary representations of p-adic groups and associated « spectral gaps ». The method works particularly well in order to attach irreducible unitary representations to the large nilpotent orbits (e.g., regular, subregular) in the Langlands dual complex Lie algebra. These results can be viewed as a p-adic analogue of Salamanca-Riba’s classification of irreducible unitary (g,K)-modules with strongly regular infinitesimal character.


K-Théorie

Catégorie d’évènement : Groupe de travail Géométrie non commutative Date/heure : 18 mars 2022 14:00-15:30 Lieu : Salle de séminaires Metz Oratrice ou orateur : Hervé Oyono-Oyono Résumé :

Sums of two squares are strongly biased towards quadratic residues

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 17 mars 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Ofir Gorodetsky (University of Oxford) Résumé :

Chebyshev famously observed empirically that more often than not, there are more primes of the form 3 mod 4 up to x than primes of the form 1 mod 4. This was confirmed theoretically much later by Rubinstein and Sarnak in a logarithmic density sense. Our understanding of this is conditional on the generalized Riemann Hypothesis as well as Linear Independence of the zeros of L-functions.

We investigate similar questions for sums of two squares in arithmetic progressions. We find a significantly stronger bias than in primes, which happens for almost all integers in a natural density sense. Because the bias is more pronounced, we do not need to assume Linear Independence of zeros, only a Chowla-type Conjecture on non-vanishing of L-functions at 1/2.

We’ll aim to be self-contained and define all the notions mentioned above during the talk. We shall review the origin of the bias in the case of primes and the work of Rubinstein and Sarnak. We’ll explain the main ideas behind the proof of the bias in the sums-of-squares setting.


TBA

Catégorie d’évènement : Groupe de travail Géométrie non commutative Date/heure : 11 mars 2022 13:00-14:30 Lieu : Oratrice ou orateur : Robert Yuncken Résumé :

Biais de Lemke Oliver et Soundararajan pour les sommes de deux carrés

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 10 mars 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Lucile Devin (Université du Littoral Côte d’Opale) Résumé :

Récemment, Lemke Oliver et Soundararajan ont observé d’importants biais dans la répartition de couples de nombres premiers consécutifs dans les progressions arithmétiques. Ils ont proposé un modèle heuristique basé sur la conjecture de Hardy–Littlewood qui explique très bien ces observations.
Nous discuterons la question analogue pour les nombres qui s’écrivent comme une somme de deux carrés d’entiers. Un biais semblable apparaît dans les données et nous développons un modèle heuristique similaire pour l’expliquer.
Travail joint avec Chantal David, Jungbae Nam et Jeremy Schlitt.


Analyse semi-classique sur les groupes de Lie nilpotents gradués

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 10 mars 2022 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Clotilde Fermanian-Kammerer (Créteil) Résumé :

Nous nous intéressons à l’analyse d’équations aux dérivées partielles posées sur des groupes de Lie nilpotents gradués et tout particulièrement à des phénomènes dits ‘haute fréquence’. Nous expliquerons comment l’on peut utiliser l’analyse harmonique du groupe pour développer une approche semi-classique, en analogie avec la théorie bâtie dans les années 70 sur l’espace ou le tore euclidien. Nous donnerons des exemples en lien avec les groupes de type Heisenberg.