Exposés à venir
Estimations explicites pour les sommes de fonctions arithmétiques, ou l'utilisation optimale de l'information spectrale finie sur les séries de Dirichlet
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 11 décembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Harald Helfgott (CNRS, IMJ) Résumé :Soit $F(s) = \sum_n a_n n^{-s}$ une série de Dirichlet. Supposons que l’on dispose d’un prolongement analytique de $F(s)$, ainsi que d’informations sur les pôles de $F(s)$ pour $|\Im s|\leq T$, où $T$ est une grande constante. Quelle est la meilleure manière d’exploiter ces données pour obtenir des estimations explicites des sommes $\sum_{n\leq x} a_n$?
Le cas de la fonction de Mertens $M(x) = \sum_{n\leq x} \mu(n)$ illustre à quel point cette question de base est restée ouverte. Il serait naturel de penser que borner $M(x)$ revient essentiellement à estimer $\psi(x) = \sum_{n\leq x} \Lambda(n)$. Pourtant, des bornes explicites assez satisfaisantes pour $\psi(x)-x$ sont connues depuis longtemps, alors que l’obtention de bonnes bornes pour $M(x)$ était un problème notoirement récalcitrant.
Nous donnons une méthode optimale pour utiliser l’information spectrale sur les pôles de $F(s)$ avec $|\Im s|\leq T$. Elle permet en particulier d’obtenir des bornes sur la fonction de Mertens nettement plus fortes que celles de la littérature, ainsi qu’une amélioration substantielle des estimations de ψ(x) pour des valeurs modérées de x.
Nous utilisons des fonctions de type « Beurling–Selberg » : plus précisément, un approximant optimal dû à Carneiro–Littmann, ainsi qu’un majorant/minorant optionnel dû à Graham–Vaaler. Notre procédure présente des points de contact avec le théorème de Wiener–Ikehara ainsi qu’avec des travaux de Ramana et Ramaré, mais ne dépend d’aucun résultat de la littérature classique sur les estimations explicites en théorie analytique des nombres.
Fréquences de lettres dans des suites auto-descriptives
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 18 décembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Mai Linh Tran-Cong Résumé :La suite d’Oldenburger-Kolakoski est l’unique mot infini sur l’alphabet {1,2} qui commence par un « 1 » et est point fixe de l’opérateur de dérivation. En 1991, M.S. Keane conjecture que cette suite admet une fréquence d’1/2 pour la lettre « 1 ».
Les suites dites « auto-descriptives » sont une généralisation du mot d’Oldenburger-Kolakoski. Ces suites sont en bijection naturelle avec l’ensemble de toutes les suites sur l’alphabet {1,2} : une suite auto-descriptive est dite « dirigée » par son homologue naturelle sur {1,2}. Est-il possible d’inférer les fréquences de lettres de l’une à partir de l’autre ?
Je présenterai dans cet exposé deux approches à cette question : l’une probabiliste (Boisson, Jamet, Marcovici — 2024), l’autre analytique (Akiyama, Jamet, Marcovici, T.C. — 2024).
Towards an asymptotic equivalence of Patterson–Sullivan and Wigner distributions for hyperbolic surfaces
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 8 janvier 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Guendalina Palmirotta (Paderborn) Résumé :A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 janvier 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cedric Pilatte (Oxford) Résumé :Antonio Lopez-Neumann (titre à venir)
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 22 janvier 2026 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Antonio Lopez-Neumann (Jussieu) Résumé :Miquel Cueca Ten (titre à venir)
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 29 janvier 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Miquel Cueca Ten (KU Leuven) Résumé :Jan Pulmann — titre à venir
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 février 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jan Pulmann (Charles University) Résumé :Job Kuit — titre à venir
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 février 2026 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Job Kuit (Paderborn) Résumé :A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 février 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Maud Szusterman (Ecole Polytechnique) Résumé :A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Kilian Lebreton (IECL) Résumé :Effie Papageorgiou (titre à venir)
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 mars 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Effie Papageorgiou Résumé :A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Emma Weschler (Lille) Résumé :A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 26 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Michel Balazard (Institut de Mathématiques de Marseille) Résumé :Archives
On computing $L’/L(1,\chi)$ and related problems
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 11 mars 2021 14:30-15:30 Lieu : Salle de séminaire de Théorie des Nombres virtuelle Oratrice ou orateur : Alessandro Languasco Résumé :We first describe an efficient algorithm to compute
$L’/L(1,\chi)$, where $\chi$ is a non-principal Dirichlet character
mod q, and q is an odd prime. We then discuss
some results on the distribution of
$m_q := \min_{\chi\ne \chi_0} \vert L’/L(1,\chi) \vert $
and about the Euler-Kronecker constants for cyclotomic fields.
Titre à préciser
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 4 mars 2021 14:15-15:15 Lieu : Oratrice ou orateur : Samuel Petite Résumé :Résumé
The distribution of random polynomials with multiplicative coefficients
Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 18 février 2021 14:30-15:30 Lieu : Oratrice ou orateur : Brad Rodgers Résumé :A classic paper of Salem and Zygmund investigates the distribution of trigonometric polynomials whose coefficients are chosen randomly (say +1 or -1 with equal probability) and independently. Salem and Zygmund characterized the typical distribution of such polynomials (gaussian) and the typical magnitude of their sup-norms (a degree N polynomial typically has sup-norm of size $\sqrt{N \log N}$ for large N). In this talk we will explore what happens when a weak dependence is introduced between coefficients of the polynomials; namely we consider polynomials with coefficients given by random multiplicative functions. We consider analogues of Salem and Zygmund’s results, exploring similarities and some differences.
Special attention will be given to a beautiful point-counting argument introduced by Vaughan and Wooley which ends up being useful.
This is joint work with Jacques Benatar and Alon Nishry.
Équations de Painlevé non-commutatives et applications
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 février 2021 14:15-15:15 Lieu : Oratrice ou orateur : Mattia Cafasso (Université d’Angers) Résumé :Les équations de Painlevé, tout comme beaucoup d’autres équations intégrables, admettent des généralisations au cadre non-commutatif, où la variable dépendante est remplacée, par exemple, par une matrice ou un opérateur. Cette extension au cadre non-commutatif a joué un rôle centrale dans ma collaboration avec Bertola et Roubtsov sur l’étude des systèmes de Calogero-Painlevé et, plus récemment, dans ma collaboration avec Bothner et Tarricone sur les équations de Painlevé de type intégrodifférentiel et leur applications aux probabilités intégrables. Dans mon séminaire, j’essaierai d’illustrer les résultats que nous avons obtenus dans les deux cas, en soulignant leur points communs.
Équations de Painlevé non-commutatives et applications
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 février 2021 14:15-15:15 Lieu : Oratrice ou orateur : Mattia Cafasso Résumé :Les équations de Painlevé, tout comme beaucoup d’autres équations intégrables, admettent des généralisations au cadre non-commutatif, o๠la variable dépendante est remplacée, par exemple, par une matrice ou un opérateur. Cette extension au cadre non-commutatif a joué un rôle centrale dans ma collaboration avec Bertola et Roubtsov sur l’étude des systèmes de Calogero-Painlevé et, plus récemment, dans ma collaboration avec Bothner et Tarricone sur les équations de Painlevé de type intégrodifférentiel et leur applications aux probabilités intégrables. Dans mon séminaire, j’essaierai d’illustrer les résultats que nous avons obtenus dans les deux cas, en soulignant leur points communs.
Théorie de l'indice et analyse microlocale sur les groupoïdes
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 février 2021 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jean-Marie Lescure (Université Clermont Auvergne) Résumé :Dans cet exposé nous aborderons deux aspects de l’utilité des groupoïdes de Lie. Le premier aspect concerne la théorie de l’indice des espaces stratifiés. Nous expliquerons comment les ingrédients du théorème d’Atiyah-Singer, ainsi que sa preuve, peuvent être reformulés à l’aide de groupoïdes, puis nous verrons comment étendre cette approche aux espaces stratifiés. Le second aspect concerne l’analyse microlocale sur les groupoïdes. Nous décrirons une généralisation des opérateurs pseudodifférentiels sur les groupoïdes de Lie : les opérateurs intégraux de Fourier, et nous mettrons en évidence le rôle fondamental joué par le groupoïde cotangent symplectique de Weinstein. Enfin, nous verrons que les solutions fondamentales des équations d’évolution appartiennent, à des régularisants près, à ce calcul intégral de Fourier.
Théorie de l'indice et analyse microlocale sur les groupoïdes
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 février 2021 14:15-15:15 Lieu : Oratrice ou orateur : Jean-Marie Lescure Résumé :Dans cet exposé nous aborderons deux aspects de l’utilité des groupoïdes de Lie. Le premier aspect concerne la théorie de l’indice des espaces stratifiés. Nous expliquerons comment les ingrédients du théorème d’Atiyah-Singer, ainsi que sa preuve, peuvent être reformulés à l’aide de groupoïdes, puis nous verrons comment étendre cette approche aux espaces stratifiés. Le second aspect concerne l’analyse microlocale sur les groupoïdes. Nous décrirons une généralisation des opérateurs pseudodifférentiels sur les groupoïdes de Lie : les opérateurs intégraux de Fourier, et nous mettrons en évidence le rôle fondamental joué par le groupoïde cotangent symplectique de Weinstein. Enfin, nous verrons que les solutions fondamentales des équations d’évolution appartiennent, à des régularisants près, à ce calcul intégral de Fourier.
Généralisations du théorème de Rockland
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 4 février 2021 15:15-16:30 Lieu : Oratrice ou orateur : Robert Yuncken Résumé :Cet exposé concerne la relation entre l’analyse des opérateurs différentiels et les représentations des groupes de Lie nilpotent. La condition de Rockland généralise l’ellipticité pour les opérateurs différentiels sur les variétés qui à l’échelle infinitésimale ressemblent à un groupe de Lie nilpotent. C’est le cas pour la géométrie de contacte et les géométries paraboliques, par exemple. Un résultat de Melin, jamais publié, montre que de tels opérateurs vérifient les propriétés d’hypoellipticité et de Fredholm sur une variété compact. Une nouvelle preuve avec le groupoïde d’holonomie d’un feuilletage singulier nous permet de généraliser en même temps le théorème des sommes-de-carrés de Hörmander et obtenir des nouvelles classes d’opérateurs hypoelliptiques. (Travaux en commun avec I. Androulidakis, O. Mohsen et E. van Erp.)
Opérateurs de Dirac non-cubiques pour les modules de dimension finie
Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 4 février 2021 13:30-14:30 Lieu : Soutenance sur YouTube Oratrice ou orateur : Spyridon Afentoulidis-Almpanis Résumé :Integration of Lie n-algebroids, or, how to solve Maurer-Cartan equations
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 janvier 2021 14:15-15:15 Lieu : Oratrice ou orateur : Pavol Severa Résumé :I will review the strategy of integration of Lie n-algebroids to Lie n-groupoids using the « path method » coming from Sullivan’s Rational Homotopy Theory. I will then explain how to solve the main analytic problem of this strategy, which is to show that the spaces of solutions of generalized Maurer-Cartan equations are actually manifolds. These results can be used to show that a « local integration » of Lie algebroids indeed produces local Lie n-groupods. Based on a joint work with Michal Å iraň.