Séminaires

Exposés à venir

Caractérisation de formes binaires de même image.

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 23 janvier 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Etienne Fouvry (Orsay) Résumé :

Soit $F(X,Y)$ une forme binaire à coefficients entiers, de discriminant non nul, de degré $\geq 3$.
A quelle condition, nécessaire et suffisante, existe-t-il une forme $G (X,Y)$, non $GL(2, Z)$-équivalente à $F(X,Y)$, telle qu’on ait l’égalité des images $F(Z^2) = G(Z^2)$ ?
La condition trouvée repose sur l’existence d’un élément d’ordre $3$, d’un certain type, dans le groupe d’automorphismes de $F$.
Travail en commun avec Peter Koymans.


Pierre Bieliavksy -- titre à venir

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 février 2025 14:14-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bieliavsky (Louvain-la-Neuve) Résumé :

À venir

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 20 mars 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Seth Hardy (Warwick) Résumé :

À venir

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (Lille) Résumé :

Archives

Approche quotient et approche de Baez-Rogers aux crochets en théorie de champs classique

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 20 octobre 2021 15:00-17:30 Lieu : Salle 046 Metz Oratrice ou orateur : Gabriel Sevestre et Maxime Wagner Résumé :

Introduction au problème des crochets de Poisson en théorie de champs classique (Tilmann Wurzbacher)

Approche quotient aux formes et champs hamiltoniens (Maxime Wagner)

Approche Lie infinie à la Baez-Rogers-Stasheff (Gabriel Sevestre)


Coarse geometry, K-théorie et paires de Hecke

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 octobre 2021 16:00-17:00 Lieu : Oratrice ou orateur : Clément Dell'Aiera Résumé :
Introduites par Shimura dans les années 50, les paires de Hecke sont des inclusions de sous-groupes qui sont presque normales en un certains sens. Bien qu’elles soient plutôt reliées à des problèmes de théorie des nombres, ces paires sont devenues d’importance en algèbre d’opérateurs après les travaux de Bost-Connes, et leur construction d’un C*-système dynamique dont la fonction de partition est la fonction zêta.

A une paire de Hecke est associée un groupe localement compact totalement discontinu, et un sous groupe compact ouvert. C’est sa complétion de Schlichting, déjà utilisée par Tzanev pour construire des facteurs de type III.
Nous donnons une interprétation géométrique aux paires de Hecke, et étudions la K-théorie de la C*-algèbre de Roe associée grâce à la complétion de Schlichting. Cela permet de prouver divers résultats de stabilité pour les conjectures de Baum-Connes et de Novikov. On répondra aussi à une question de Tzanev (2000) : les paires de Hecke moyennables satisfont la conjecture de Baum-Connes énoncée dans sa thèse.

Ensembles de Sidon

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 14 octobre 2021 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Robin Riblet (IECL) Résumé :

Un ensemble de Sidon d’un semi-groupe est un ensemble dont toutes les sommes de deux éléments sont distinctes. Des travaux de Bose, Chowla et Erdős établissent que le cardinal maximal d’un ensemble de Sidon dans un intervalle d’entiers de cardinal $n$ est équivalent à $\sqrt{n}$. Nous nous intéresserons au cardinal maximal d’un ensemble de Sidon dans l’union (de cardinal $n$) de deux intervalles. Un résultat d’Abbott affirme qu’il est supérieur à $0,0805\sqrt{n}$. Nous améliorerons cette borne et prouverons que ce cardinal est en fait supérieur à $0,8444\sqrt{n}$. Nous parlerons également d’autres résultats à propos des ensembles de Sidon et d’une de leurs généralisations : les ensembles $B_2[g]$.


Rencontre "Dynamiques quantiques non classiques" à Metz

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 14 octobre 2021 13:45-18:00 Lieu : Description
Demi-journée organisée par Jérémy Faupin, Salah Mehdi et Tilmann Wurzbacher.
Il y aura trois exposés, donnés par Stephan De Bièvre (Lille), Michel Egeileh (Beyrouth) et Malte Henkel (LPCT Nancy).
Le programme, les résumés et le poster de la rencontre se trouvent à la page suivante :

Quantification des groupes de Lie semsimples et leurs variétés de drapeaux

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 7 octobre 2021 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Robert Yuncken (IECL) Résumé :

Je vais donner un survol des groupes quantiques semi-simples du point de vue géométrie non-commutative.  Je commencerai par expliquer la quantification des groupes de Lie semisimples compacts et complexes. Puis on discutera la géométrie des variétés de drapeaux quantiques, en commençant par l’exemple fondamental de la sphère de Podlès, une quantification de la sphère de Riemann $\mathbb{C}\mathbb{P}^1.$


Approximation rationnelle des nombres sturmiens

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 30 septembre 2021 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Yann Bugeaud Résumé :

Soient $\theta$ et $\rho$ des nombres réels avec $0 \le \theta, \rho < 1$ et $\theta$ irrationnel. Pour $n \ge 1$, posons $$ s_n := s_n (\theta, \rho) = \big\lfloor n \theta + \rho \big\rfloor – \big\lfloor (n-1) \theta + \rho \big\rfloor $$ Alors, le mot infini $$ {\bf s}_{\theta, \rho} := s_1 s_2 s_3 \ldots $$ est le mot sturmien (inférieur) de pente $\theta$ et d’intercept $\rho$, écrit sur l’alphabet $\{0, 1\}$. Nous explicitons le développement en fraction continue du nombre réel $$ \xi_{b, \theta, \rho} = (b-1) \, \sum_{n \ge 1} \, {s_n (\theta, \rho) \over b^n}. $$ Cela nous permet d’obtenir une formule donnant son exposant d’irrationalité en fonction de $\theta$ et du développement d’Ostrowski de $\rho$ en base $\theta$. Nous étendons ainsi un résultat classique de Böhmer (1927) qui ne couvre que le cas où $\rho = \theta$ et contient par exemple la surprenante égalité $$ \sum_{j \ge 1} {1 \over 2^{\lfloor j \gamma \rfloor} } = [0; 1, 2, 2, 2^2, 2^3, 2^5, 2^8, 2^{13}, 2^{21}, \ldots ], \quad \gamma = {1 + \sqrt{5} \over 2}. $$ Il s’agit d’un travail en commun avec Michel Laurent.


The Gauss-Bonnet formula on Riemannian polyhedra via higher transgressions of the Pfaffian

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 30 septembre 2021 14:15-15:15 Lieu : Oratrice ou orateur : Sergiu Moroianu (Académie roumaine des sciences) Résumé :
This talk will start with a survey of the standard Gauss-Bonnet formula on surfaces and its extension to higher dimensions, including on manifolds with corners, and more generally on polyhedral Riemannian manifolds.
I will then introduce transgressions of arbitrary order, with respect to families of unit-vector fields indexed by a polytope, for the Pfaffian of the curvature of metric connections on real vector bundles. They allow one to compute the Euler characteristic of a Riemannian polyhedral manifold in terms of integrals of explicit transgression forms on each boundary face, extending Chern’s differential-geometric proof of the generalized Gauss-Bonnet formula on closed manifolds and on manifolds-with-boundary. 
As a consequence, I will give an identity for spherical and hyperbolic polyhedra relating volumes of faces of even codimension and measures of outer angles.

Quantum confinement on almost-Riemannian manifolds

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 23 septembre 2021 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Ivan Beschastnyi (Universidade de Aveiro) Résumé :

Almost-Riemannian manifolds constitute a class of manifolds with singular metric tensors. They give rise to well defined metric spaces and can be seen as the simplest non-equiregular sub-Riemannian structures. They attracted a lot of interested lately due to the quantum confinement phenomena, which states that a quantum particle on some classes of almost-Riemannian manifolds is confined by the singularity, while a classical particle modelled by the geodesics is not. I will explain some results concerning this phenomena, including some recent works by myself and together with U. Boscain and E. Pozzoli.


Soutenance de thèse Robin Riblet

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 3 septembre 2021 13:30-13:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Robin Riblet Résumé :

Ensembles de petite somme et ensembles de Sidon, étude de deux extrêmes (théorie des nombres, combinatoire additive).

Soutenance de thèse de Robin Riblet sous la direction d’Alain PLAGNE et d’Anne DE ROTON.

Vendredi 03 Septembre à 13h30 en salle de conférence et en visioconférence.


Factorisations des normes d'entiers algébriques et suites à somme nulle avec poids

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 1 juillet 2021 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Schmid Wolfgang Résumé :

Soit $O_K$ l’anneau d’entiers algébriques d’un corps de nombres. Pour $a \in O_K \setminus \{0\}$ soit $N(a)$ la norme absolue de $a$, et $M = \{N(a) \colon a \in O_K \setminus \{0\} \}$. Il est bien connu que $M$ est un sous-semi-groupe multiplicatif de $\mathbb{N}^{\ast}$. Nous essayons de comprendre l’arithmétique de ces semi-groupes. Cela nous amène à étudier des suites à somme nulle pondérée sur des groupes abéliens finis.

Travaux en commun avec Safia Boukheche, Kamil Merito et Oscar Ordaz.