Séminaires

Exposés à venir

Estimations explicites pour les sommes de fonctions arithmétiques, ou l'utilisation optimale de l'information spectrale finie sur les séries de Dirichlet

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 11 décembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Harald Helfgott (CNRS, IMJ) Résumé :
Travail en collaboration avec A. Chirre.

Soit $F(s) = \sum_n a_n n^{-s}$ une série de Dirichlet. Supposons que l’on dispose d’un prolongement analytique de $F(s)$, ainsi que d’informations sur les pôles de $F(s)$ pour $|\Im s|\leq T$, où $T$ est une grande constante. Quelle est la meilleure manière d’exploiter ces données pour obtenir des estimations explicites des sommes $\sum_{n\leq x} a_n$?

Le cas de la fonction de Mertens $M(x) = \sum_{n\leq x} \mu(n)$ illustre à quel point cette question de base est restée ouverte. Il serait naturel de penser que borner $M(x)$ revient essentiellement à estimer $\psi(x) = \sum_{n\leq x} \Lambda(n)$. Pourtant, des bornes explicites assez satisfaisantes pour $\psi(x)-x$ sont connues depuis longtemps, alors que l’obtention de bonnes bornes pour $M(x)$ était un problème notoirement récalcitrant.

Nous donnons une méthode optimale pour utiliser l’information spectrale sur les pôles de $F(s)$ avec $|\Im s|\leq T$. Elle permet en particulier d’obtenir des bornes sur la fonction de Mertens nettement plus fortes que celles de la littérature, ainsi qu’une amélioration substantielle des estimations de pour des valeurs modérées de .

Nous utilisons des fonctions de type « Beurling–Selberg » : plus précisément, un approximant optimal dû à Carneiro–Littmann, ainsi qu’un majorant/minorant optionnel dû à Graham–Vaaler. Notre procédure présente des points de contact avec le théorème de Wiener–Ikehara ainsi qu’avec des travaux de Ramana et Ramaré, mais ne dépend d’aucun résultat de la littérature classique sur les estimations explicites en théorie analytique des nombres.

 


Fréquences de lettres dans des suites auto-descriptives

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 18 décembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Mai Linh Tran-Cong Résumé :

La suite d’Oldenburger-Kolakoski est l’unique mot infini sur l’alphabet {1,2} qui commence par un « 1 » et est point fixe de l’opérateur de dérivation. En 1991, M.S. Keane conjecture que cette suite admet une fréquence d’1/2 pour la lettre « 1 ».

Les suites dites « auto-descriptives » sont une généralisation du mot d’Oldenburger-Kolakoski. Ces suites sont en bijection naturelle avec l’ensemble de toutes les suites sur l’alphabet {1,2} : une suite auto-descriptive est dite « dirigée » par son homologue naturelle sur {1,2}. Est-il possible d’inférer les fréquences de lettres de l’une à partir de l’autre ?

Je présenterai dans cet exposé deux approches à cette question : l’une probabiliste (Boisson, Jamet, Marcovici — 2024), l’autre analytique (Akiyama, Jamet, Marcovici, T.C. — 2024).


Towards an asymptotic equivalence of Patterson–Sullivan and Wigner distributions for hyperbolic surfaces

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 8 janvier 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Guendalina Palmirotta (Paderborn) Résumé :
There is a curious relation between two kinds of phase space distributions associated to eigenfunctions of the Laplacian on a hyperbolic surface: Patterson-Sullivan distributions, which are invariant under the geodesic flow, and Wigner distributions, which arise in quantum chaos and are invariant under the wave group.
In this talk, we will describe these two distributions and generalise them on convex-cocompact hyperbolic surfaces. Then, we will show how they are asymptotically intertwined.
This is a joint work with Benjamin Delarue (Universität Paderborn).

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 janvier 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cedric Pilatte (Oxford) Résumé :

Antonio Lopez-Neumann (titre à venir)

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 22 janvier 2026 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Antonio Lopez-Neumann (Jussieu) Résumé :

Miquel Cueca Ten (titre à venir)

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 29 janvier 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Miquel Cueca Ten (KU Leuven) Résumé :

Jan Pulmann — titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 février 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jan Pulmann (Charles University) Résumé :

Job Kuit — titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 février 2026 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Job Kuit (Paderborn) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 février 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Maud Szusterman (Ecole Polytechnique) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Kilian Lebreton (IECL) Résumé :

Effie Papageorgiou (titre à venir)

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 mars 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Effie Papageorgiou Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Emma Weschler (Lille) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 26 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Michel Balazard (Institut de Mathématiques de Marseille) Résumé :

Archives

Gowers uniformity of thin subsets of primes

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 3 mars 2022 14:30-15:30 Lieu : Salle de séminaire de Théorie des Nombres virtuelle Oratrice ou orateur : Fernando Xuancheng Shao (University of Kentucky) Résumé :

A celebrated theorem of Green-Tao asserts that the set of primes contains arbitrarily long arithmetic progressions. In fact, they count asymptotically the number of k-term arithmetic progressions in primes up to a threshold. Their work involves discorrelation estimates between primes and nilsequences, which imply that the set of primes is Gowers uniform. In this talk I will discuss results of this type for primes restricted to short intervals and in arithmetic progressions. For example, we prove that the set of primes in (X, X+H]  with H > X^{5/8+\varepsilon} is Gowers uniform; we also prove that, for almost all q < X^{1/4-\varepsilon}, the set of primes up to X in a coprime residue class a\pmod{q} is Gowers uniform. This is based on joint works with K. Matomäki, J. Teräväinen, T. Tao.


Zéros réels des polynômes de Fekete et applications

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 24 février 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Youness Lamzouri (IECL) Résumé :

Les polynômes de Fekete sont certains polynômes de type Littlewood dont les coefficients sont les valeurs du symbole de Legendre, ou plus généralement du symbole de Kronecker. Ces polynômes ont été considérés par Fekete afin d’étudier les zéros réels des fonctions L de Dirichlet, et d’essayer de démontrer la non-existence des fameux zéros de Siegel. Depuis lors, leurs zéros et la répartition de leurs valeurs ont été intensivement étudiés. Dans cet exposé, je présenterai des résultats récents concernant les zéros réels des polynômes de Fekete. Je discuterai également de certaines applications de ces résultats, notamment aux changements de signes des sommes partielles de sommes de caractères quadratiques. Ceci est un travail en commun avec O. Klurman et M. Munsch.


Transformation de Poisson de formes différentielles : le cas de l’espace hyperbolique réel

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 24 février 2022 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Khalid Koufany Résumé :

Nous étudions la transformation de Poisson des hyperformes différentielles sur la sphère $S^{n-1}$ vue comme frontière de Furstenberg de l’espace hyperbolique réel $H^n(\mathbb R)$.
Pour $1< r < \infty$, $0\leq p < (n-1)/2$ et $q=p-1, p$, nous montrons de cette transformation est un isomorphisme topologique de l’espace $L^r$ des  $q$-hyperformes  de $S^{n-1}$ sur un sous-espace de type Hardy de l’espace des $p$-formes de $H^n(\mathbb R)$ qui sont functions propres du Laplacien de Hodge-de Rham.
(Travail en collaboration avec S. Bensaid et A. Boussejra)


Ensembles de formes linéaires de complexité maximale

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 3 février 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Michel Waldschmidt (Sorbonne Université) Résumé :

Dans un travail en commun avec Michael Kaminski et Igor Shparlinski (arXiv:2110.04657), nous donnons des exemples explicites d’ensembles de $m$ formes linéaires en $n$ variables sur le corps des nombres rationnels, dont le calcul nécessite $m(n-1)$ additions.


Quantification de $\mathrm{GL}_n(\mathbb{R})\ltimes \mathbb{R}^n$ (et de ses analogues)

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 3 février 2022 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Victor Gayral (Reims) Résumé :
Dans cet exposé, j’expliquerai comment construire un 2-cocycle dual
(aka un twist de Drinfeld non formel) pour une classe de groupes de Mackey
(généralisant le groupe affine $\mathrm{GL}_n(\mathbb{R})\ltimes \mathbb{R}^n$) à partir d’une
quantification à la Kohn-Nirenberg. Le but de ce travail, en commun avec
Pierre Bieliavsky, Sergey Neshveyev et Lars Tuset, est d’obtenir de
nouveaux examples concrets de groupes quantiques localement compacts
dans le cadre des algèbres de von Neumann.
Dans cette construction, la théorie des représentations (quasi-triviale pour
cette classe de groupes) jouera un rôle prépondérant.

Questions d'équirépartition de sommes exponentielles indexées par un sous-groupe

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 27 janvier 2022 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Théo Untrau (IMB, Bordeaux) Résumé :

On s’intéresse à des sommes exponentielles habituellement indexées par un système de représentants
des entiers inversibles modulo p, ou des inversibles modulo une puissance d’un nombre premier p.
Cependant, au lieu de regarder ces sommes complètes, on les restreint en les indexant seulement
par un sous-groupe d’ordre d fixé. Lorsque p tend vers l’infini en respectant certaines conditions de
congruence qui assurent l’existence d’un unique sous-groupe d’ordre d, on démontre que nos
familles de sommes exponentielles s’équirépartissent dans certaines régions du plan complexe
décrites comme l’image d’un tore par un polynôme de Laurent relativement explicite. Dans un second temps, on montre que l’on peut également restreindre le paramètre indexant la famille de sommes à ne parcourir que de très petits sous-groupes des classes inversibles modulo p, sans affecter le résultat d’équirépartition.


GT "Primes as sums of Fibonacci numbers" (#4)

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 20 janvier 2022 15:10-16:10 Lieu : Salle Döblin Oratrice ou orateur : Thomas Stoll (IECL) Résumé :

Vaaler (II)


GT "Primes as sums of Fibonacci numbers" (#3)

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 20 janvier 2022 15:10-16:10 Lieu : Salle Döblin Oratrice ou orateur : Manfred Madritsch (IECL) Résumé :

Normes de Gowers.


Limites d'orbites adjointes et approximation d'orbites nilpotentes dans les algèbre de Lie réelles simples

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 20 janvier 2022 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas Fresse (IECL) Résumé :
Dans cet exposé, on considère des limites de familles continues d’orbites adjointes dans une algèbre de Lie réelle non-compacte.
La limite sera toujours une réunion d’orbites nilpotentes.
On relie la limite avec des notions de cônes asymptotiques, et on montre que la limite est toujours non-triviale sauf si la famille continue d’orbites est elle-même triviale.
On se focalise ensuite sur des limites de familles continues d’orbites semi-simples hyperboliques (resp. elliptiques); dans ce cas, la limite peut être décrite explicitement.
On considère enfin le problème inverse consistant à réaliser une variété nilpotente donnée comme limite d’orbites semi-simples hyperboliques (resp. elliptiques).
L’exposé est basé sur un travail en collaboration avec Salah Mehdi.

Manin's conjecture for singular cubic hypersurfaces

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 20 janvier 2022 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Wen Tingting (Paris 13) Résumé :
Let $S_Q$ denote the cubic hypersurface $x^3= Q(y_1, \ldots , y_m)z$,
where $Q$ is a positive definite quadratic form in $m$ variables with integer coefficients.
This $S_Q$ ranges over a class of singular cubic hypersurfaces as $Q$ varies.
For $S_Q$, we prove that Manin’s conjecture is true if $Q$ is locally determined, and we give an explicit asymptotic formula with a power saving error term; we also show in general that Manin’s conjecture is true up to a leading constant if $m \geq 6$ is even.