Séminaires

Exposés à venir

Grands ensembles évitant certaines configurations

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 24 avril 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Alexandre Bailleul (ENS Paris-Saclay) Résumé :

En se laissant guider par l’exemple des ensembles de Sidon (ensembles de nombres dont les sommes de deux éléments sont uniques, très étudiés en combinatoire additive), je présenterai des résultats récents, en collaboration avec R. Riblet, où des techniques de théorie des ensembles permettent de construire des ensembles « grands » en certains sens (cardinalité, mesure ou dimension) tout en étant « épars » car évitant des configurations prescrites (pas de relation linéaire, ou ne contenant pas de parallélogramme, etc.). Des questions subtiles en lien avec l’axiome du choix seront évoquées.


Pseudogroups and geometric structures

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 mai 2025 14:15-15:15 Lieu : Salle de réunion Metz (ARC-027) Oratrice ou orateur : Francesco Cattafi (Würzburg) Résumé :
The space of (local) symmetries of a given geometric structure has the natural structure of a Lie (pseudo)group. Conversely, geometric structures admitting a local model can be described via the pseudogroup of symmetries of such local model.

This philosophy can be made precise at various levels of generality (depending on the definition of « geometric structure ») and using different tools/methods. In this talk I will present some aspects of a new framework, which includes previous formalisms (e.g. G-structures or Cartan geometries) and allows us to prove integrability theorems.

A main novelty of this point of view consists of the fact that it uncovers the (beautiful!) hidden structures behind Lie pseudogroups and geometric structures. Indeed, the relevant objects which make this approach work are Lie groupoids endowed with a multiplicative « PDE-structure », their principal actions, and the related Morita theory. Poisson geometry provides the guiding principle to understand those objects, which are directly inspired from, respectively, symplectic groupoids, principal Hamiltonian bundles, and symplectic Morita equivalence.

This is based on a forthcoming book written jointly with Luca Accornero, Marius Crainic and María Amelia Salazar.


A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (CNRS, Lille) Résumé :

Antonio Miti – titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 juin 2025 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Miti (Rome) Résumé :

Archives

GT "Primes as sums of Fibonacci numbers" (#1)

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 18 novembre 2021 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Thomas Stoll (IECL) Résumé :

On probabilistic generalizations of the Nyman-Beurling criterion for the Zeta function

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 18 novembre 2021 10:45-11:45 Lieu : Salle Döblin Oratrice ou orateur : Sébastien Darses (Aix-Marseille Université) – Séminaire commun ATN+PS Résumé :

Séminaire commun avec l’équipe PS

One of the seemingly innocent reformulations of the terrifying Riemann Hypothesis (RH) is the Nyman-Beurling criterion: The indicator function of (0,1) can be linearly approximated in a L^2 space by dilations of the fractional part function. Randomizing these dilations generates new structures and criteria for RH, regularizing very intricate ones. One other possible nice feature is to consider polynomials instead of Dirichlet polynomials for the approximations. How then are the huge difficulties reallocated? The answers are quite surprising!

The talk will be very accessible, especially for graduate students.
Joint work with F. Alouges and E. Hillion.


Pas d’exposé (Journées SL2R)

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 novembre 2021 00:00-00:00 Lieu : Oratrice ou orateur : Résumé :

Pas d’exposé en raison des journées SL2R à Strasbourg :

http://irma.math.unistra.fr/article1841.html

 

 


Crochets dérivés

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 17 novembre 2021 15:00-17:00 Lieu : Salle 046 Metz Oratrice ou orateur : Philippe Bonneau Résumé :

L’exposé expliquera les points clefs de l’article suivant d’Yvette Kosmann-Schwarzbach :

« Derived brackets », Letters in Math. Phys. 69, 61-87 (2004).


Restriction des représentations unitaires irréductibles de Spin(n,1) à un sous-groupe parabolique

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 4 novembre 2021 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Gang Liu (IECL) Résumé :

Soient G=Spin(n,1) et P un sous-groupe parabolique minimal de G. Soit π une représentation unitaire irréductible de G. Dans cet exposé, je vais parler de la restriction de π à P. Il s’agit d’un travail en commun avec Y. Oshima et J. Yu.


Groupes gradués et algèbres de Clifford

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 21 octobre 2021 15:45-16:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Wolfgang Bertram (IECL) Résumé :
Parmi les algèbres associatives Z/2Z-graduées, les algèbres de Clifford forment une famille d’exemples la mieux connue. Les algèbres extérieures peuvent être considérées comme des membres  dégénérés de cette famille, lorsque la forme quadratique définissant l’algèbre de Clifford est la forme nulle. Dans le cas  non-dégénéré, la structure de l’algèbre peut être encodée par un groupe fini, parfois appelé « Salingaros vee-group ». Ces groupes sont des « groupes  additivement gradués« . Nous donnons une définition générale de cette notion, et expliquons comment définir leurs « produits gradués », analogue du produit tensoriel gradué d’algèbres graduées. Ceci met en place un cadre assez agréable pour prouver abstraitement certaines propriétés des algèbres de Clifford, par exemple, pour établir leur « classification ». Une question ouverte concerne la « contraction de cette théorie vers le cas dégénéré » : est-il possible de voir le « calcul différentiel gradué » dans ce cadre comme un analogue du « calcul différentiel catégorique » expliqué par Jérémy (cf. autre exposé du jour) ? 

Construction d'un nombre normal tel que son inverse soit également normal

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 21 octobre 2021 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Manfred Madritsch (IECL) Résumé :

Soit b2 un entier et Nb={0,1,,b1} l’ensemble des chiffres associé. Tout nombre réel x[0,1] admet une représentation de la forme x=k1akbk=0.a1a2a3, avec akNb. Le nombre x est dit normal en base b si pour tout entier 1 toute suite d1d de longueur d’éléments de Nb a la même fréquence d’apparitions b, i.e. limn1n#{0k<n:ak+1=d1,,ak+=d}=b.

Michel Mendés France a demandé s’il existe un nombre réel x tel que x et 1/x soient normaux en base 2. Dans cet exposé nous allons construire un tel nombre et montrer qu’il est calculable. En particulier, nous allons montrer que x et 1/x sont normaux en toute base b2 et également normaux par rapport à l’écriture en fraction continue.

Il s’agit d’un travail en commun avec Verónica Becher de l’Université de Buenos Aires.


Une approche fonctorielle du calcul différentiel

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 21 octobre 2021 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérémy Haut (IECL) Résumé :

Au cœur du calcul différentiel se trouve la notion de quotients de différences et de leur prolongation continue, ce qui peut être défini dans des modules sur des anneaux topologiques assez généraux.  L’étude de ces quotients et de leurs domaines amène naturellement à la définition d’une famille de foncteurs « tangents » (dont chacun vient avec une transformation naturelle appelée « ancre »).  Appliquer ces différents foncteurs aux opérations de l’anneau de base fournit une famille d’ « algèbres tangentes », et les foncteurs tangents peuvent être réinterprétés comme des généralisations des extensions scalaires aux algèbres associées.  Une famille de transformations naturelles entre les foncteurs tangents peut être retenue, qui donne lieu à une famille de morphismes entre algèbres tangentes, et fait émerger une catégorie de telles algèbres.  Changeant de point de vue sur la naturalité, on peut ensuite définir les domaines de fonctions lisses comme des foncteurs depuis la catégorie des algèbres tangentes, et les fonctions lisses elles-mêmes comme des transformations naturelles entre ces foncteurs, établissant un plongement d’une « catégorie du calcul différentiel » dans une catégorie de foncteurs.

Référence : https://arxiv.org/abs/2006.04452


Approche quotient et approche de Baez-Rogers aux crochets en théorie de champs classique

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 20 octobre 2021 15:00-17:30 Lieu : Salle 046 Metz Oratrice ou orateur : Gabriel Sevestre et Maxime Wagner Résumé :

Introduction au problème des crochets de Poisson en théorie de champs classique (Tilmann Wurzbacher)

Approche quotient aux formes et champs hamiltoniens (Maxime Wagner)

Approche Lie infinie à la Baez-Rogers-Stasheff (Gabriel Sevestre)


Coarse geometry, K-théorie et paires de Hecke

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 octobre 2021 16:00-17:00 Lieu : Oratrice ou orateur : Clément Dell’Aiera Résumé :
Introduites par Shimura dans les années 50, les paires de Hecke sont des inclusions de sous-groupes qui sont presque normales en un certains sens. Bien qu’elles soient plutôt reliées à des problèmes de théorie des nombres, ces paires sont devenues d’importance en algèbre d’opérateurs après les travaux de Bost-Connes, et leur construction d’un C*-système dynamique dont la fonction de partition est la fonction zêta.

A une paire de Hecke est associée un groupe localement compact totalement discontinu, et un sous groupe compact ouvert. C’est sa complétion de Schlichting, déjà utilisée par Tzanev pour construire des facteurs de type III.
Nous donnons une interprétation géométrique aux paires de Hecke, et étudions la K-théorie de la C*-algèbre de Roe associée grâce à la complétion de Schlichting. Cela permet de prouver divers résultats de stabilité pour les conjectures de Baum-Connes et de Novikov. On répondra aussi à une question de Tzanev (2000) : les paires de Hecke moyennables satisfont la conjecture de Baum-Connes énoncée dans sa thèse.