Séminaires

Exposés à venir

Caractérisation de formes binaires de même image.

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 23 janvier 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Etienne Fouvry (Orsay) Résumé :

Soit $F(X,Y)$ une forme binaire à coefficients entiers, de discriminant non nul, de degré $\geq 3$.
A quelle condition, nécessaire et suffisante, existe-t-il une forme $G (X,Y)$, non $GL(2, Z)$-équivalente à $F(X,Y)$, telle qu’on ait l’égalité des images $F(Z^2) = G(Z^2)$ ?
La condition trouvée repose sur l’existence d’un élément d’ordre $3$, d’un certain type, dans le groupe d’automorphismes de $F$.
Travail en commun avec Peter Koymans.


Pierre Bieliavksy -- titre à venir

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 février 2025 14:14-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bieliavsky (Louvain-la-Neuve) Résumé :

À venir

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 20 mars 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Seth Hardy (Warwick) Résumé :

À venir

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (Lille) Résumé :

Archives

Résonances du Laplacien sur les fibrés vectoriels homogènes sur des espaces symétriques de rang réel un

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 29 juin 2021 17:00-18:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Simon Roby Résumé :

On étudie les résonances de l’opérateur de Laplace agissant sur les sections d’un fibré vectoriel homogène sur un espace symétrique Riemannien de type non-compact. On suppose que l’espace symétrique est de rang un, mais la représentation irréductible τ du compact maximal K, qui définit le fibré vectoriel, est quelconque. On détermine alors les résonances. Si on suppose de plus que τ apparaît dans les représentations de la série principale sphérique, on détermine les représentations issues des résonances. Elles sont toutes irréductibles. On trouve leurs paramètres de Langlands, leurs fronts d’onde et lesquelles sont unitarisables.


Geometry and prequantization of 2-plectic manifolds

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 24 juin 2021 14:00-14:00 Lieu : Oratrice ou orateur : Gabriel Sevestre Résumé :

Soutenance de these


Small prime power residues modulo $p$

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 20 mai 2021 14:45-15:45 Lieu : Salle de séminaire de Théorie des Nombres virtuelle Oratrice ou orateur : Kübra Benli Résumé :

Let $p$ be a prime number. For each positive integer $k\geq 2$, it is widely believed that the smallest prime that is a $k$th power residue modulo $p$ should be $O(p^{\epsilon})$, for any $\epsilon>0$. Elliott proved that such a prime is at most $p^{\frac{k-1}{4}+\epsilon}$, for each $\epsilon>0$. In this talk we discuss the distribution of prime $k$th power residues modulo $p$ in the range $[1, p]$, with a more emphasis on the subrange $[1,p^{\frac{k-1}{4}+\epsilon}]$ for $\epsilon>0$.


Deux applications du théorème de Macaulay à la Combinatoire additive

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 22 avril 2021 14:30-15:30 Lieu : Salle de séminaire de Théorie des Nombres virtuelle Oratrice ou orateur : Shalom Eliahou (Université du Littoral) Résumé :

Un théorème classique de Macaulay en Algèbre commutative (1927) caractérise les fonctions de Hilbert des algèbres graduées standard. Ce théorème a des conséquences remarquables en Combinatoire additive, comme cela n’a été observé que tout récemment. L’objet de l’exposé est de montrer deux telles applications, sur la conjecture de Wilf portant sur les semigroupes numériques, et sur la croissance des ensembles sommes itérés dans un groupe abélien.


Répartition des fonctions multiplicatives dans les progressions arithmétiques de grands modules et applications

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 avril 2021 14:30-15:30 Lieu : Salle de séminaire de Théorie des Nombres virtuelle Oratrice ou orateur : Gérald Tenenbaum (IECL) Résumé :
Nous décrirons le contenu d’un récent travail en collaboration avec Étienne Fouvry, et consacré à l’obtention de nouvelles estimations de type Bombieri-Vinogradov pour une classe étendue de fonctions arithmétiques multiplicatives et à la déduction de plusieurs applications, notamment : une nouvelle preuve d’un théorème de Drappeau et Topacogullari relatif à des corrélations arithmétiques ; un théorème de type Erdős-Wintner dont le support est un ensemble de niveau d’une fonction additive pour un argument décalé ; un théorème général de type Erdős-Kac pour le même type de support; une loi du logarithme itéré pour la répartition des facteurs premiers des entiers pondérés par $\tau(n-1)$, où $\tau$ désigne la fonction nombre de diviseurs.

Multiplicative orders mod $p$

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 8 avril 2021 14:30-15:30 Lieu : Salle de séminaire de Théorie des Nombres virtuelle Oratrice ou orateur : Paul Pollack (University of Georgia) Résumé :

I will survey what is known about the distribution of the orders of integers mod $p$, as $p$ varies. Particular attention will be paid to problems of the following sort: For fixed $a$ and $b$, how do the order of $a$ mod $p$ and the order of $b$ mod $p$ compare, as $p$ varies? The proofs will draw from the elementary, algebraic, and analytic strands of number theory. (So hopefully something for everyone!)


Géométrie riemannienne et analyse spectrale sur les tores non commutatifs

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 1 avril 2021 15:45-16:45 Lieu : Zoom Meeting ID: 895 2739 9138, Passcode: 7ni0ti Oratrice ou orateur : Raphaël Ponge (Université du Sichuan, Chengdu) Résumé :
Les tores non commutatifs sont des exemples bien connus d’espaces non commutatifs, quelque soit ce qu’ont peu entendre par espace non commutatif. Les travaux notamment de Connes-Tretkoff et Connes-Moscovici ont motivé le développement de différente notions de courbures pour les tores non commutatifs à partir de l’analyse spectrale de l’opérateur de laplace-Beltrami dans ce contexte. Jusqu’à récemment on a surtout regardé les métriques conformément plates ou les produits de telles métriques. Même pour ces métriques la noncommutativité des tores non commutatifs rend les calculus particulièrement difficiles.
Dans cet exposé on va s’intéresser aux métriques riemanniennes plus générales. Après avoir expliqué la construction de l’opérateur de Laplace-Beltrami dans ce contexte,  et en fonction du temps permis, les résultats suivants seront présentés:
  • Théorème de Gauss-Bonnet pour les métriques riemanniennes arbitraires. Cela étend un résultat de Connes-Tretkoff obtenu dans le cas conformément plat.
  • Loi de Weyl microlocale. Cela peut se voir comme un premier pas vers l’unique ergodicité quantique dans ce contexte.
  • Formule d’intégration “quantique”. C’est un analogue d’un résultat de Connes pour les variétés riemanniennes compactes et permet de retrouver la forme volume à partir de la trace de Dixmier. Cette dernière joue le rôle de l’intégrale en GNC.
  • Formule d’indice locale pour les tores non commutatifs équipés d’une structure Kähler non-commutative.
  • An analogue de l’inégalité de Cwikel-Lieb-Rozenblum pour les valeurs propres négatives d’opérateurs de Schrödinger avec des potentiels non-lisse. Cela devrait permettre d’avoir une loi de Weyl semi-classique pour de tels opérateurs. On obtient ainsi un lien entre la GNC et l’analyse semi-classique (au sens des écoles de Simon et de Birman-Solomyak).

Modular zeros in the character table of the symmetric group

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 1 avril 2021 15:30-16:30 Lieu : Salle de séminaire de Théorie des Nombres virtuelle Oratrice ou orateur : Sarah Peluse (IAS/Princeton) Résumé :
In 2017, Miller conjectured, based on computational evidence, that for any fixed prime $p$ the density of entries in the character table of $S_n$ that are divisible by $p$ goes to $1$ as $n$ goes to infinity. I’ll describe a proof of this conjecture, which is joint work with K. Soundararajan. I will also discuss the (still open) problem of determining the asymptotic density of zeros in the character table of $S_n$, where it is not even clear from computational data what one should expect.

Quelques propriétés du groupe de Cremona

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 1 avril 2021 14:00-15:00 Lieu : Zoom Meeting ID: 895 2739 9138, Passcode: 7ni0ti Oratrice ou orateur : Julie Déserti (Université de Nice-Sophia Antipolis) Résumé :

Après avoir introduit le groupe des transformations birationnelles du plan projectif complexe, j’en donnerai quelques propriétés en faisant un parallèle avec les groupes linéaires.


Poincaré series and linking of Legendrian knots

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 25 mars 2021 14:15-15:15 Lieu : Visioconférence Oratrice ou orateur : Nguyen Viet Dang (Université Claude Bernard Lyon 1) Résumé :

On a surface M with strict negative curvature given two closed curves $c_1,c_2$, the Poincaré series is a complex function counting orthogeodesic arcs joining the two curves, in the same way the Riemann zeta function counts the primes. I will first discuss the meromorphic continuation of the Poincaré series and when the curves are homologically trivial, I will explain why the value at 0 is a well–defined rational number which can be interpreted as linking of Legendrian knots. A corollary of our result is that for any pair of points (x,y) in M x M, the lenghts of the geodesics joining the two points determine the genus of M.

Zoom Meeting: Meeting ID: 895 2739 9138, Passcode: 7ni0ti