Séminaires

Exposés à venir

Caractérisation de formes binaires de même image.

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 23 janvier 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Etienne Fouvry (Orsay) Résumé :

Soit $F(X,Y)$ une forme binaire à coefficients entiers, de discriminant non nul, de degré $\geq 3$.
A quelle condition, nécessaire et suffisante, existe-t-il une forme $G (X,Y)$, non $GL(2, Z)$-équivalente à $F(X,Y)$, telle qu’on ait l’égalité des images $F(Z^2) = G(Z^2)$ ?
La condition trouvée repose sur l’existence d’un élément d’ordre $3$, d’un certain type, dans le groupe d’automorphismes de $F$.
Travail en commun avec Peter Koymans.


Pierre Bieliavksy -- titre à venir

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 février 2025 14:14-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bieliavsky (Louvain-la-Neuve) Résumé :

À venir

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 20 mars 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Seth Hardy (Warwick) Résumé :

À venir

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (Lille) Résumé :

Archives

GT "Primes as sums of Fibonacci numbers" (#3)

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 20 janvier 2022 15:10-16:10 Lieu : Salle Döblin Oratrice ou orateur : Manfred Madritsch (IECL) Résumé :

Normes de Gowers.


Limites d'orbites adjointes et approximation d'orbites nilpotentes dans les algèbre de Lie réelles simples

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 20 janvier 2022 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas Fresse (IECL) Résumé :
Dans cet exposé, on considère des limites de familles continues d’orbites adjointes dans une algèbre de Lie réelle non-compacte.
La limite sera toujours une réunion d’orbites nilpotentes.
On relie la limite avec des notions de cônes asymptotiques, et on montre que la limite est toujours non-triviale sauf si la famille continue d’orbites est elle-même triviale.
On se focalise ensuite sur des limites de familles continues d’orbites semi-simples hyperboliques (resp. elliptiques); dans ce cas, la limite peut être décrite explicitement.
On considère enfin le problème inverse consistant à réaliser une variété nilpotente donnée comme limite d’orbites semi-simples hyperboliques (resp. elliptiques).
L’exposé est basé sur un travail en collaboration avec Salah Mehdi.

Manin's conjecture for singular cubic hypersurfaces

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 20 janvier 2022 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Wen Tingting (Paris 13) Résumé :
Let $S_Q$ denote the cubic hypersurface $x^3= Q(y_1, \ldots , y_m)z$,
where $Q$ is a positive definite quadratic form in $m$ variables with integer coefficients.
This $S_Q$ ranges over a class of singular cubic hypersurfaces as $Q$ varies.
For $S_Q$, we prove that Manin’s conjecture is true if $Q$ is locally determined, and we give an explicit asymptotic formula with a power saving error term; we also show in general that Manin’s conjecture is true up to a leading constant if $m \geq 6$ is even.

Le cône de Horn pour le pléthysme et formules de multiplicativité

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 janvier 2022 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre-Emmanuel Chaput Résumé :
Étant donné un sous-groupe réductif H d’un groupe réductif G, les paires de représentations irréductibles W de H et V de G telles que W soit somme directe de la restriction de V comme H-module sont paramétrées par des paires de poids dominants pour H et G. Ils engendrent un cône polyhédral, appelé cône de Horn. Je rappellerai des résultats décrivant ce cône par des inéquations linéaires explicites. Lorsqu’on sait que la multiplicité est positive, une question naturelle consiste à tenter de la calculer.
Quand la paire (W,V) est sur une face de codimension 1 du cône de Horn, la multiplicité satisfait une propriété de récursivité : elle est égale à une multiplicité similaire, mais où G est remplacé par un de ses sous-groupes de Levi (dépendant de la face du cône). Dans un travail en commun avec Nicolas Ressayre, nous montrons une propriété plus compliquée de récursivité qui s’applique pour certaines faces du cône de Horn en codimension supérieure. Cette formule est montrée de manière géométrique en étudiant la ramification d’un morphisme génériquement fini naturellement défini par la face

Compactifications de Martin des immeubles affines (en commun avec Bartosz Trojan)

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 16 décembre 2021 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bertrand Rémy (ENS Lyon) Résumé :

Les notions de base sur les immeubles affines seront introduites : ces espaces sont des complexes cellulaires attachés à des groupes de Lie non archimédiens pour mieux les comprendre. Ensuite, quelques procédures classiques pour compacter ces espaces seront décrites, par analogie avec les espaces symétriques riemanniens non compacts. Ce sera enfin l’occasion d’expliquer en quel sens les compactifications de Martin fournissent un moyen naturel et analytique d’obtenir des compactifications « à gros bord » (obtenues plus artificiellement auparavant).


Réseaux sur les entiers de Gauss et fractions continues complexes

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 16 décembre 2021 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Nicolas Chevallier (Université de Haute Alsace) Résumé :

L’objectif est de construire un algorithme de fraction continue complexe trouvant toutes les meilleures approximations diophantiennes d’un nombre complexe. En utilisant la suite des vecteurs minimaux d’un réseau de $\mathbb{C}^2$ sur l’anneau des entiers de Gauss, nous obtenons un algorithme défini sur une sous-variété de $\mathrm{SL}(2,\mathbb{C})$. La correspondance entre les vecteurs minimaux et les meilleures approximations diophantiennes garantit que notre algorithme atteint son but. Un sous-produit de l’algorithme est la meilleure constante pour la version complexe du théorème de Dirichlet sur les approximations des nombres complexes par les quotients de deux entiers gaussiens.


GT "Primes as sums of Fibonacci numbers" (#2)

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 16 décembre 2021 11:00-12:00 Lieu : Oratrice ou orateur : Pierre Popoli (IECL) Résumé :

Détection des chiffres en base de Zeckendorf.


Journée Scientifique FCH "Pseudorandomness, cryptography and number theory"

Catégorie d'évènement : Conférence Date/heure : 9 décembre 2021 00:00-23:59 Lieu : Centre Inria Nancy-Grand Est Description

Une suite est dite pseudo-aléatoire est une suite qui « ressemble » à une suite aléatoire. Ces suites ont de nombreuses applications en cryptographie, en particulier, dans le chiffrement par flot et des dispositifs de registre à décalage à rétroaction linéaire. Pour évaluer ce caractère, il faut faire appel à plusieurs notions mathématiques telles que la corrélation, la complexité linéaire et bien d’autres mesures de complexité et répartition. Alors pour tenter de créer des suites pseudo-aléatoires, on peut prendre des exemples issus de la théorie des nombres comme la suite des valeurs du symbole de Legendre pour un grand nombre premier.

L’objectif de cette journée est d’expliciter différentes relations qui existent entre la cryptographie et la théorie des nombres et de mettre en évidence leur lien avec des suites pseudo-aléatoires.

Cette journée scientifique est organisée dans le cadre institutionnel de la Fédération Charles Hermite et avec le soutien de LUE-Digitrust et l’ANR ArithRand.

Programme de la journée

Organisateurs locaux:

Cécile Dartyge (IECL), Damien Jamet (LORIA), Pierre Popoli (IECL) et Thomas Stoll (IECL)


Changes in digits of primes

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 2 décembre 2021 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Benli Kübra (IECL) Résumé :

Erdős proved that there are infinitely many weakly prime numbers (also called (digitally) delicate primes), i.e. prime numbers such that changing any single one of the digits, in a given base, with any other digit always results in a composite number. Tao proved that weakly prime numbers constitute a positive proportion in all prime numbers. In this talk, we are going to discuss further quantitative refinements on the distribution of weakly prime numbers.


Un éclatement groupoïde de feuilletage singulier et applications

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 2 décembre 2021 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Omar Mohsen (Orsay) Résumé :

Je vais présenter un éclatement de feuilletage singulier (au sens de Stefan—Sussmann) et après je vais parler de quelques applications.