Séminaires

Exposés à venir

Caractérisation de formes binaires de même image.

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 23 janvier 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Etienne Fouvry (Orsay) Résumé :

Soit $F(X,Y)$ une forme binaire à coefficients entiers, de discriminant non nul, de degré $\geq 3$.
A quelle condition, nécessaire et suffisante, existe-t-il une forme $G (X,Y)$, non $GL(2, Z)$-équivalente à $F(X,Y)$, telle qu’on ait l’égalité des images $F(Z^2) = G(Z^2)$ ?
La condition trouvée repose sur l’existence d’un élément d’ordre $3$, d’un certain type, dans le groupe d’automorphismes de $F$.
Travail en commun avec Peter Koymans.


Pierre Bieliavksy -- titre à venir

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 février 2025 14:14-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bieliavsky (Louvain-la-Neuve) Résumé :

À venir

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 20 mars 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Seth Hardy (Warwick) Résumé :

À venir

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (Lille) Résumé :

Archives

Afternoon Representation Theory 2

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 23 mars 2021 13:45-17:10 Lieu : Zoom Description

13:45 – 14:40: Alessandra IOZZI (ETH Zürich)

 The real spectrum compactification of character varieties: characterizations and applications

We describe properties of a compactification of general character varieties with good topological properties and give various interpretations of its ideal points. We relate this to the Thurston-Parreau compactification and apply our
results to the theory of maximal representations.

This is a joint work with Marc Burger, Anne Parreau and Maria Beatrice Pozzetti.


15:00 – 15:55: Raphaël BEUZART-PLESSIS (Aix-Marseille Université and CNRS)

Multipliers and isolation of the cuspidal spectrum by convolution operators

Let $G$ be a real reductive algebraic group and $\Gamma$; be an arithmetic lattice of $G$.
In this talk, I will explain how to generalize a construction of Lindenstrauss-Venkatesh giving rise to certain operators on $L^2(\Gamma\backslash G)$ with image in the cuspidal subspace. These operators can be written, in the adelic setting, as combinations of convolution operators at Archimedean places and $p$-adic places (Hecke operators). A crucial ingredient of the proof is the existence of sufficiently many multipliers of $G$ acting on the space of smooth functions with rapid decay (but not necessarily $K$-finite).
Time permitting, I will also describe one application of this construction to the global Gan-Gross-Prasad conjecture for unitary groups.
This talk is based on joint work with Yifeng Liu, Wei Zhang and Xinwen Zhu.


16:15 – 17:10: Erik VAN DEN BAN (University of Utrecht)

The Harish-Chandra transform for Whittaker functions

 I will discuss the role of the descent transform in Harish-Chandra’s approach to the Plancherel formula for Whittaker functions, presented in the posthumous volume 5 of his collected works (Springer 2018). At an earlier occasion I explained how the proof of the Plancherel theorem can be completed by using a Paley-Wiener shift technique. In the present talk I will explain how the proof can be completed in a more straightforward way, by using a suitable result on wave packets of Whittaker functions.


Webpage


Contacts

To register as a participant or for further information, please contact one of the organizers: Salah Mehdi or Angela Pasquale.


An approximate form of Artin's holomorphy conjecture and nonvanishing of Artin L-functions

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 18 mars 2021 15:30-16:30 Lieu : Salle de séminaire de Théorie des Nombres virtuelle Oratrice ou orateur : Asif Zaman (University of Toronto) Résumé :
Let $k$ be a number field and $G$ be a finite group, and let $\mathfrak{F}_{k}^{G}$ be a family of number fields $K$ such that $K/k$ is normal with Galois group isomorphic to $G$.  Together with  Robert Lemke Oliver and Jesse Thorner, we prove for many families that for almost all $K \in \mathfrak{F}_k^G$, all of the $L$-functions associated to Artin representations whose kernel does not contain a fixed normal subgroup are holomorphic and non-vanishing in a wide region.
These results have several arithmetic applications. For example, we prove a strong effective prime ideal theorem  that holds for almost all fields in several natural large degree families, including the family of degree $n$ $S_n$-extensions for any $n \geq 2$ and the family of prime degree $p$ extensions (with any Galois structure) for any prime $p \geq 2$. I will discuss this result, describe the main ideas of the proof, and share some applications to bounds on $\ell$-torsion subgroups of class groups, to the extremal order of class numbers, and to the subconvexity problem for Dedekind zeta functions.

The two-dimensional Dirac bag model in strong magnetic fields

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 mars 2021 14:15-15:15 Lieu : Visioconférence Oratrice ou orateur : Edgardo Stockmeyer (Pontificia Universidad Catolica de Chile) Résumé :

We consider a Dirac system confined to a bounded domain in the plane. This amounts to a family of boundary conditions. There are two extreme cases, zig-zig and Infinite-mass boundary conditions. Consider a magnetic field perpendicular to the plane. I will present results on accurate asymptotics of the energy spectrum of the underlying Hamiltonian in the strong magnetic field limit. We will compare the results for different boundary conditions.

(This is based on joint collaboration with Jean-Marie Barbaroux, Loic Le Treust and Nicolas Raymond)

Zoom Meeting: Meeting ID: 895 2739 9138, Passcode: 7ni0ti


On computing $L’/L(1,\chi)$ and related problems

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 11 mars 2021 14:30-15:30 Lieu : Salle de séminaire de Théorie des Nombres virtuelle Oratrice ou orateur : Alessandro Languasco Résumé :

We first describe an efficient algorithm to compute
$L’/L(1,\chi)$, where $\chi$ is a non-principal Dirichlet character
mod q, and q is an odd prime. We then discuss
some results on the distribution of
$m_q := \min_{\chi\ne \chi_0} \vert L’/L(1,\chi) \vert $
and about the Euler-Kronecker constants for cyclotomic fields.


Titre à  préciser

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 4 mars 2021 14:15-15:15 Lieu : Oratrice ou orateur : Samuel Petite Résumé :

Résumé


The distribution of random polynomials with multiplicative coefficients

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 18 février 2021 14:30-15:30 Lieu : Oratrice ou orateur : Brad Rodgers Résumé :

A classic paper of Salem and Zygmund investigates the distribution of trigonometric polynomials whose coefficients are chosen randomly (say +1 or -1 with equal probability) and independently. Salem and Zygmund characterized the typical distribution of such polynomials (gaussian) and the typical magnitude of their sup-norms (a degree N polynomial typically has sup-norm of size $\sqrt{N \log N}$ for large N). In this talk we will explore what happens when a weak dependence is introduced between coefficients of the polynomials; namely we consider polynomials with coefficients given by random multiplicative functions. We consider analogues of Salem and Zygmund’s results, exploring similarities and some differences.

Special attention will be given to a beautiful point-counting argument introduced by Vaughan and Wooley which ends up being useful.

This is joint work with Jacques Benatar and Alon Nishry.


Équations de Painlevé non-commutatives et applications

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 février 2021 14:15-15:15 Lieu : Oratrice ou orateur : Mattia Cafasso (Université d'Angers) Résumé :

Les équations de Painlevé, tout comme beaucoup d’autres équations intégrables, admettent des généralisations au cadre non-commutatif, où la variable dépendante est remplacée, par exemple, par une matrice ou un opérateur. Cette extension au cadre non-commutatif a joué un rôle centrale dans ma collaboration avec Bertola et Roubtsov sur l’étude des systèmes de Calogero-Painlevé et, plus récemment, dans ma collaboration avec Bothner et Tarricone sur les équations de Painlevé de type intégrodifférentiel et leur applications aux probabilités intégrables. Dans mon séminaire, j’essaierai d’illustrer les résultats que nous avons obtenus dans les deux cas, en soulignant leur points communs.


Équations de Painlevé non-commutatives et applications

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 février 2021 14:15-15:15 Lieu : Oratrice ou orateur : Mattia Cafasso Résumé :

Les équations de Painlevé, tout comme beaucoup d’autres équations intégrables, admettent des généralisations au cadre non-commutatif, o๠la variable dépendante est remplacée, par exemple, par une matrice ou un opérateur. Cette extension au cadre non-commutatif a joué un rôle centrale dans ma collaboration avec Bertola et Roubtsov sur l’étude des systèmes de Calogero-Painlevé et, plus récemment, dans ma collaboration avec Bothner et Tarricone sur les équations de Painlevé de type intégrodifférentiel et leur applications aux probabilités intégrables. Dans mon séminaire, j’essaierai d’illustrer les résultats que nous avons obtenus dans les deux cas, en soulignant leur points communs.


Théorie de l'indice et analyse microlocale sur les groupoïdes

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 février 2021 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jean-Marie Lescure (Université Clermont Auvergne) Résumé :

Dans cet exposé nous aborderons deux aspects de l’utilité des groupoïdes de Lie. Le premier aspect concerne la théorie de l’indice des espaces stratifiés. Nous expliquerons comment les ingrédients du théorème d’Atiyah-Singer, ainsi que sa preuve, peuvent être reformulés à l’aide de groupoïdes, puis nous verrons comment étendre cette approche aux espaces stratifiés. Le second aspect concerne l’analyse microlocale sur les groupoïdes. Nous décrirons une généralisation des opérateurs pseudodifférentiels sur les groupoïdes de Lie : les opérateurs intégraux de Fourier, et nous mettrons en évidence le rôle fondamental joué par le groupoïde cotangent symplectique de Weinstein. Enfin, nous verrons que les solutions fondamentales des équations d’évolution appartiennent, à des régularisants près, à ce calcul intégral de Fourier.


Théorie de l'indice et analyse microlocale sur les groupoïdes

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 février 2021 14:15-15:15 Lieu : Oratrice ou orateur : Jean-Marie Lescure Résumé :

Dans cet exposé nous aborderons deux aspects de l’utilité des groupoïdes de Lie. Le premier aspect concerne la théorie de l’indice des espaces stratifiés. Nous expliquerons comment les ingrédients du théorème d’Atiyah-Singer, ainsi que sa preuve, peuvent être reformulés à  l’aide de groupoïdes, puis nous verrons comment étendre cette approche aux espaces stratifiés. Le second aspect concerne l’analyse microlocale sur les groupoïdes. Nous décrirons une généralisation des opérateurs pseudodifférentiels sur les groupoïdes de Lie : les opérateurs intégraux de Fourier, et nous mettrons en évidence le rôle fondamental joué par le groupoïde cotangent symplectique de Weinstein. Enfin, nous verrons que les solutions fondamentales des équations d’évolution appartiennent, à  des régularisants près, à  ce calcul intégral de Fourier.