Séminaires

Exposés à venir

Estimations explicites pour les sommes de fonctions arithmétiques, ou l'utilisation optimale de l'information spectrale finie sur les séries de Dirichlet

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 11 décembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Harald Helfgott (CNRS, IMJ) Résumé :
Travail en collaboration avec A. Chirre.

Soit $F(s) = \sum_n a_n n^{-s}$ une série de Dirichlet. Supposons que l’on dispose d’un prolongement analytique de $F(s)$, ainsi que d’informations sur les pôles de $F(s)$ pour $|\Im s|\leq T$, où $T$ est une grande constante. Quelle est la meilleure manière d’exploiter ces données pour obtenir des estimations explicites des sommes $\sum_{n\leq x} a_n$?

Le cas de la fonction de Mertens $M(x) = \sum_{n\leq x} \mu(n)$ illustre à quel point cette question de base est restée ouverte. Il serait naturel de penser que borner $M(x)$ revient essentiellement à estimer $\psi(x) = \sum_{n\leq x} \Lambda(n)$. Pourtant, des bornes explicites assez satisfaisantes pour $\psi(x)-x$ sont connues depuis longtemps, alors que l’obtention de bonnes bornes pour $M(x)$ était un problème notoirement récalcitrant.

Nous donnons une méthode optimale pour utiliser l’information spectrale sur les pôles de $F(s)$ avec $|\Im s|\leq T$. Elle permet en particulier d’obtenir des bornes sur la fonction de Mertens nettement plus fortes que celles de la littérature, ainsi qu’une amélioration substantielle des estimations de pour des valeurs modérées de .

Nous utilisons des fonctions de type « Beurling–Selberg » : plus précisément, un approximant optimal dû à Carneiro–Littmann, ainsi qu’un majorant/minorant optionnel dû à Graham–Vaaler. Notre procédure présente des points de contact avec le théorème de Wiener–Ikehara ainsi qu’avec des travaux de Ramana et Ramaré, mais ne dépend d’aucun résultat de la littérature classique sur les estimations explicites en théorie analytique des nombres.

 


Fréquences de lettres dans des suites auto-descriptives

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 18 décembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Mai Linh Tran-Cong Résumé :

La suite d’Oldenburger-Kolakoski est l’unique mot infini sur l’alphabet {1,2} qui commence par un « 1 » et est point fixe de l’opérateur de dérivation. En 1991, M.S. Keane conjecture que cette suite admet une fréquence d’1/2 pour la lettre « 1 ».

Les suites dites « auto-descriptives » sont une généralisation du mot d’Oldenburger-Kolakoski. Ces suites sont en bijection naturelle avec l’ensemble de toutes les suites sur l’alphabet {1,2} : une suite auto-descriptive est dite « dirigée » par son homologue naturelle sur {1,2}. Est-il possible d’inférer les fréquences de lettres de l’une à partir de l’autre ?

Je présenterai dans cet exposé deux approches à cette question : l’une probabiliste (Boisson, Jamet, Marcovici — 2024), l’autre analytique (Akiyama, Jamet, Marcovici, T.C. — 2024).


Towards an asymptotic equivalence of Patterson–Sullivan and Wigner distributions for hyperbolic surfaces

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 8 janvier 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Guendalina Palmirotta (Paderborn) Résumé :
There is a curious relation between two kinds of phase space distributions associated to eigenfunctions of the Laplacian on a hyperbolic surface: Patterson-Sullivan distributions, which are invariant under the geodesic flow, and Wigner distributions, which arise in quantum chaos and are invariant under the wave group.
In this talk, we will describe these two distributions and generalise them on convex-cocompact hyperbolic surfaces. Then, we will show how they are asymptotically intertwined.
This is a joint work with Benjamin Delarue (Universität Paderborn).

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 janvier 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cedric Pilatte (Oxford) Résumé :

Antonio Lopez-Neumann (titre à venir)

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 22 janvier 2026 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Antonio Lopez-Neumann (Jussieu) Résumé :

Miquel Cueca Ten (titre à venir)

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 29 janvier 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Miquel Cueca Ten (KU Leuven) Résumé :

Jan Pulmann — titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 février 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jan Pulmann (Charles University) Résumé :

Job Kuit — titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 février 2026 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Job Kuit (Paderborn) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 février 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Maud Szusterman (Ecole Polytechnique) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Kilian Lebreton (IECL) Résumé :

Effie Papageorgiou (titre à venir)

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 mars 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Effie Papageorgiou Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Emma Weschler (Lille) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 26 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Michel Balazard (Institut de Mathématiques de Marseille) Résumé :

Archives

Rencontre "Dynamiques quantiques non classiques" à Metz

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 14 octobre 2021 13:45-18:00 Lieu : Description
Demi-journée organisée par Jérémy Faupin, Salah Mehdi et Tilmann Wurzbacher.
Il y aura trois exposés, donnés par Stephan De Bièvre (Lille), Michel Egeileh (Beyrouth) et Malte Henkel (LPCT Nancy).
Le programme, les résumés et le poster de la rencontre se trouvent à la page suivante :

Quantification des groupes de Lie semsimples et leurs variétés de drapeaux

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 7 octobre 2021 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Robert Yuncken (IECL) Résumé :

Je vais donner un survol des groupes quantiques semi-simples du point de vue géométrie non-commutative.  Je commencerai par expliquer la quantification des groupes de Lie semisimples compacts et complexes. Puis on discutera la géométrie des variétés de drapeaux quantiques, en commençant par l’exemple fondamental de la sphère de Podlès, une quantification de la sphère de Riemann $\mathbb{C}\mathbb{P}^1.$


Approximation rationnelle des nombres sturmiens

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 30 septembre 2021 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Yann Bugeaud Résumé :

Soient $\theta$ et $\rho$ des nombres réels avec $0 \le \theta, \rho < 1$ et $\theta$ irrationnel. Pour $n \ge 1$, posons $$ s_n := s_n (\theta, \rho) = \big\lfloor n \theta + \rho \big\rfloor – \big\lfloor (n-1) \theta + \rho \big\rfloor $$ Alors, le mot infini $$ {\bf s}_{\theta, \rho} := s_1 s_2 s_3 \ldots $$ est le mot sturmien (inférieur) de pente $\theta$ et d’intercept $\rho$, écrit sur l’alphabet $\{0, 1\}$. Nous explicitons le développement en fraction continue du nombre réel $$ \xi_{b, \theta, \rho} = (b-1) \, \sum_{n \ge 1} \, {s_n (\theta, \rho) \over b^n}. $$ Cela nous permet d’obtenir une formule donnant son exposant d’irrationalité en fonction de $\theta$ et du développement d’Ostrowski de $\rho$ en base $\theta$. Nous étendons ainsi un résultat classique de Böhmer (1927) qui ne couvre que le cas où $\rho = \theta$ et contient par exemple la surprenante égalité $$ \sum_{j \ge 1} {1 \over 2^{\lfloor j \gamma \rfloor} } = [0; 1, 2, 2, 2^2, 2^3, 2^5, 2^8, 2^{13}, 2^{21}, \ldots ], \quad \gamma = {1 + \sqrt{5} \over 2}. $$ Il s’agit d’un travail en commun avec Michel Laurent.


The Gauss-Bonnet formula on Riemannian polyhedra via higher transgressions of the Pfaffian

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 30 septembre 2021 14:15-15:15 Lieu : Oratrice ou orateur : Sergiu Moroianu (Académie roumaine des sciences) Résumé :
This talk will start with a survey of the standard Gauss-Bonnet formula on surfaces and its extension to higher dimensions, including on manifolds with corners, and more generally on polyhedral Riemannian manifolds.
I will then introduce transgressions of arbitrary order, with respect to families of unit-vector fields indexed by a polytope, for the Pfaffian of the curvature of metric connections on real vector bundles. They allow one to compute the Euler characteristic of a Riemannian polyhedral manifold in terms of integrals of explicit transgression forms on each boundary face, extending Chern’s differential-geometric proof of the generalized Gauss-Bonnet formula on closed manifolds and on manifolds-with-boundary. 
As a consequence, I will give an identity for spherical and hyperbolic polyhedra relating volumes of faces of even codimension and measures of outer angles.

Quantum confinement on almost-Riemannian manifolds

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 23 septembre 2021 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Ivan Beschastnyi (Universidade de Aveiro) Résumé :

Almost-Riemannian manifolds constitute a class of manifolds with singular metric tensors. They give rise to well defined metric spaces and can be seen as the simplest non-equiregular sub-Riemannian structures. They attracted a lot of interested lately due to the quantum confinement phenomena, which states that a quantum particle on some classes of almost-Riemannian manifolds is confined by the singularity, while a classical particle modelled by the geodesics is not. I will explain some results concerning this phenomena, including some recent works by myself and together with U. Boscain and E. Pozzoli.


Soutenance de thèse Robin Riblet

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 3 septembre 2021 13:30-13:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Robin Riblet Résumé :

Ensembles de petite somme et ensembles de Sidon, étude de deux extrêmes (théorie des nombres, combinatoire additive).

Soutenance de thèse de Robin Riblet sous la direction d’Alain PLAGNE et d’Anne DE ROTON.

Vendredi 03 Septembre à 13h30 en salle de conférence et en visioconférence.


Factorisations des normes d'entiers algébriques et suites à somme nulle avec poids

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 1 juillet 2021 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Schmid Wolfgang Résumé :

Soit $O_K$ l’anneau d’entiers algébriques d’un corps de nombres. Pour $a \in O_K \setminus \{0\}$ soit $N(a)$ la norme absolue de $a$, et $M = \{N(a) \colon a \in O_K \setminus \{0\} \}$. Il est bien connu que $M$ est un sous-semi-groupe multiplicatif de $\mathbb{N}^{\ast}$. Nous essayons de comprendre l’arithmétique de ces semi-groupes. Cela nous amène à étudier des suites à somme nulle pondérée sur des groupes abéliens finis.

Travaux en commun avec Safia Boukheche, Kamil Merito et Oscar Ordaz.


Résonances du Laplacien sur les fibrés vectoriels homogènes sur des espaces symétriques de rang réel un

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 29 juin 2021 17:00-18:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Simon Roby Résumé :

On étudie les résonances de l’opérateur de Laplace agissant sur les sections d’un fibré vectoriel homogène sur un espace symétrique Riemannien de type non-compact. On suppose que l’espace symétrique est de rang un, mais la représentation irréductible τ du compact maximal K, qui définit le fibré vectoriel, est quelconque. On détermine alors les résonances. Si on suppose de plus que τ apparaît dans les représentations de la série principale sphérique, on détermine les représentations issues des résonances. Elles sont toutes irréductibles. On trouve leurs paramètres de Langlands, leurs fronts d’onde et lesquelles sont unitarisables.


Geometry and prequantization of 2-plectic manifolds

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 24 juin 2021 14:00-14:00 Lieu : Oratrice ou orateur : Gabriel Sevestre Résumé :

Soutenance de these


Small prime power residues modulo $p$

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 20 mai 2021 14:45-15:45 Lieu : Salle de séminaire de Théorie des Nombres virtuelle Oratrice ou orateur : Kübra Benli Résumé :

Let $p$ be a prime number. For each positive integer $k\geq 2$, it is widely believed that the smallest prime that is a $k$th power residue modulo $p$ should be $O(p^{\epsilon})$, for any $\epsilon>0$. Elliott proved that such a prime is at most $p^{\frac{k-1}{4}+\epsilon}$, for each $\epsilon>0$. In this talk we discuss the distribution of prime $k$th power residues modulo $p$ in the range $[1, p]$, with a more emphasis on the subrange $[1,p^{\frac{k-1}{4}+\epsilon}]$ for $\epsilon>0$.