Exposés à venir
Grands ensembles évitant certaines configurations
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 24 avril 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Alexandre Bailleul (ENS Paris-Saclay) Résumé :En se laissant guider par l’exemple des ensembles de Sidon (ensembles de nombres dont les sommes de deux éléments sont uniques, très étudiés en combinatoire additive), je présenterai des résultats récents, en collaboration avec R. Riblet, où des techniques de théorie des ensembles permettent de construire des ensembles « grands » en certains sens (cardinalité, mesure ou dimension) tout en étant « épars » car évitant des configurations prescrites (pas de relation linéaire, ou ne contenant pas de parallélogramme, etc.). Des questions subtiles en lien avec l’axiome du choix seront évoquées.
Pseudogroups and geometric structures
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 mai 2025 14:15-15:15 Lieu : Salle de réunion Metz (ARC-027) Oratrice ou orateur : Francesco Cattafi (Würzburg) Résumé :This philosophy can be made precise at various levels of generality (depending on the definition of « geometric structure ») and using different tools/methods. In this talk I will present some aspects of a new framework, which includes previous formalisms (e.g. G-structures or Cartan geometries) and allows us to prove integrability theorems.
A main novelty of this point of view consists of the fact that it uncovers the (beautiful!) hidden structures behind Lie pseudogroups and geometric structures. Indeed, the relevant objects which make this approach work are Lie groupoids endowed with a multiplicative « PDE-structure », their principal actions, and the related Morita theory. Poisson geometry provides the guiding principle to understand those objects, which are directly inspired from, respectively, symplectic groupoids, principal Hamiltonian bundles, and symplectic Morita equivalence.
This is based on a forthcoming book written jointly with Luca Accornero, Marius Crainic and María Amelia Salazar.
A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (CNRS, Lille) Résumé :Antonio Miti – titre à venir
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 juin 2025 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Miti (Rome) Résumé :Archives
The two-dimensional Dirac bag model in strong magnetic fields
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 mars 2021 14:15-15:15 Lieu : Visioconférence Oratrice ou orateur : Edgardo Stockmeyer (Pontificia Universidad Catolica de Chile) Résumé :We consider a Dirac system confined to a bounded domain in the plane. This amounts to a family of boundary conditions. There are two extreme cases, zig-zig and Infinite-mass boundary conditions. Consider a magnetic field perpendicular to the plane. I will present results on accurate asymptotics of the energy spectrum of the underlying Hamiltonian in the strong magnetic field limit. We will compare the results for different boundary conditions.
(This is based on joint collaboration with Jean-Marie Barbaroux, Loic Le Treust and Nicolas Raymond)
Zoom Meeting: Meeting ID: 895 2739 9138, Passcode: 7ni0ti
On computing and related problems
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz
Date/heure : 11 mars 2021 14:30-15:30
Lieu : Salle de séminaire de Théorie des Nombres virtuelle
Oratrice ou orateur : Alessandro Languasco
Résumé : We first describe an efficient algorithm to compute
mod q, and q is an odd prime. We then discuss
some results on the distribution of
and about the Euler-Kronecker constants for cyclotomic fields.
Titre à préciser
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 4 mars 2021 14:15-15:15 Lieu : Oratrice ou orateur : Samuel Petite Résumé :Résumé
The distribution of random polynomials with multiplicative coefficients
Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 18 février 2021 14:30-15:30 Lieu : Oratrice ou orateur : Brad Rodgers Résumé :A classic paper of Salem and Zygmund investigates the distribution of trigonometric polynomials whose coefficients are chosen randomly (say +1 or -1 with equal probability) and independently. Salem and Zygmund characterized the typical distribution of such polynomials (gaussian) and the typical magnitude of their sup-norms (a degree N polynomial typically has sup-norm of size
Special attention will be given to a beautiful point-counting argument introduced by Vaughan and Wooley which ends up being useful.
This is joint work with Jacques Benatar and Alon Nishry.
Équations de Painlevé non-commutatives et applications
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 février 2021 14:15-15:15 Lieu : Oratrice ou orateur : Mattia Cafasso (Université d’Angers) Résumé :Les équations de Painlevé, tout comme beaucoup d’autres équations intégrables, admettent des généralisations au cadre non-commutatif, où la variable dépendante est remplacée, par exemple, par une matrice ou un opérateur. Cette extension au cadre non-commutatif a joué un rôle centrale dans ma collaboration avec Bertola et Roubtsov sur l’étude des systèmes de Calogero-Painlevé et, plus récemment, dans ma collaboration avec Bothner et Tarricone sur les équations de Painlevé de type intégrodifférentiel et leur applications aux probabilités intégrables. Dans mon séminaire, j’essaierai d’illustrer les résultats que nous avons obtenus dans les deux cas, en soulignant leur points communs.
Équations de Painlevé non-commutatives et applications
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 février 2021 14:15-15:15 Lieu : Oratrice ou orateur : Mattia Cafasso Résumé :Les équations de Painlevé, tout comme beaucoup d’autres équations intégrables, admettent des généralisations au cadre non-commutatif, o๠la variable dépendante est remplacée, par exemple, par une matrice ou un opérateur. Cette extension au cadre non-commutatif a joué un rôle centrale dans ma collaboration avec Bertola et Roubtsov sur l’étude des systèmes de Calogero-Painlevé et, plus récemment, dans ma collaboration avec Bothner et Tarricone sur les équations de Painlevé de type intégrodifférentiel et leur applications aux probabilités intégrables. Dans mon séminaire, j’essaierai d’illustrer les résultats que nous avons obtenus dans les deux cas, en soulignant leur points communs.
Théorie de l'indice et analyse microlocale sur les groupoïdes
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 février 2021 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jean-Marie Lescure (Université Clermont Auvergne) Résumé :Dans cet exposé nous aborderons deux aspects de l’utilité des groupoïdes de Lie. Le premier aspect concerne la théorie de l’indice des espaces stratifiés. Nous expliquerons comment les ingrédients du théorème d’Atiyah-Singer, ainsi que sa preuve, peuvent être reformulés à l’aide de groupoïdes, puis nous verrons comment étendre cette approche aux espaces stratifiés. Le second aspect concerne l’analyse microlocale sur les groupoïdes. Nous décrirons une généralisation des opérateurs pseudodifférentiels sur les groupoïdes de Lie : les opérateurs intégraux de Fourier, et nous mettrons en évidence le rôle fondamental joué par le groupoïde cotangent symplectique de Weinstein. Enfin, nous verrons que les solutions fondamentales des équations d’évolution appartiennent, à des régularisants près, à ce calcul intégral de Fourier.
Théorie de l'indice et analyse microlocale sur les groupoïdes
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 février 2021 14:15-15:15 Lieu : Oratrice ou orateur : Jean-Marie Lescure Résumé :Dans cet exposé nous aborderons deux aspects de l’utilité des groupoïdes de Lie. Le premier aspect concerne la théorie de l’indice des espaces stratifiés. Nous expliquerons comment les ingrédients du théorème d’Atiyah-Singer, ainsi que sa preuve, peuvent être reformulés à l’aide de groupoïdes, puis nous verrons comment étendre cette approche aux espaces stratifiés. Le second aspect concerne l’analyse microlocale sur les groupoïdes. Nous décrirons une généralisation des opérateurs pseudodifférentiels sur les groupoïdes de Lie : les opérateurs intégraux de Fourier, et nous mettrons en évidence le rôle fondamental joué par le groupoïde cotangent symplectique de Weinstein. Enfin, nous verrons que les solutions fondamentales des équations d’évolution appartiennent, à des régularisants près, à ce calcul intégral de Fourier.
Généralisations du théorème de Rockland
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 4 février 2021 15:15-16:30 Lieu : Oratrice ou orateur : Robert Yuncken Résumé :Cet exposé concerne la relation entre l’analyse des opérateurs différentiels et les représentations des groupes de Lie nilpotent. La condition de Rockland généralise l’ellipticité pour les opérateurs différentiels sur les variétés qui à l’échelle infinitésimale ressemblent à un groupe de Lie nilpotent. C’est le cas pour la géométrie de contacte et les géométries paraboliques, par exemple. Un résultat de Melin, jamais publié, montre que de tels opérateurs vérifient les propriétés d’hypoellipticité et de Fredholm sur une variété compact. Une nouvelle preuve avec le groupoïde d’holonomie d’un feuilletage singulier nous permet de généraliser en même temps le théorème des sommes-de-carrés de Hörmander et obtenir des nouvelles classes d’opérateurs hypoelliptiques. (Travaux en commun avec I. Androulidakis, O. Mohsen et E. van Erp.)