Exposés à venir
Caractérisation de formes binaires de même image.
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 23 janvier 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Etienne Fouvry (Orsay) Résumé :Soit $F(X,Y)$ une forme binaire à coefficients entiers, de discriminant non nul, de degré $\geq 3$.
A quelle condition, nécessaire et suffisante, existe-t-il une forme $G (X,Y)$, non $GL(2, Z)$-équivalente à $F(X,Y)$, telle qu’on ait l’égalité des images $F(Z^2) = G(Z^2)$ ?
La condition trouvée repose sur l’existence d’un élément d’ordre $3$, d’un certain type, dans le groupe d’automorphismes de $F$.
Travail en commun avec Peter Koymans.
Pierre Bieliavksy -- titre à venir
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 février 2025 14:14-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bieliavsky (Louvain-la-Neuve) Résumé :À venir
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 20 mars 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Seth Hardy (Warwick) Résumé :À venir
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (Lille) Résumé :Archives
A local index formula for non-unital semi-finite spectral triples
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 6 juin 2019 15:45-16:45 Lieu : Oratrice ou orateur : Victor Gayral Résumé :In this talk, I will explain a joint work with Carey, Rennie and Sukochev, where we prove a local index formula for non-unital semi-finite spectral triples. Coverings of manifolds of bounded geometry, group actions on $C^*$-algebras, Moyal plane, provide examples.
Correspondance de Stratonovich-Weyl pour les orbites massives d'un groupe de Poincaré généralisé
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 6 juin 2019 14:15-15:15 Lieu : Oratrice ou orateur : Benjamin Cahen Résumé :Sur la complexité de familles d'ensembles pseudo-aléatoires
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 23 mai 2019 14:30-15:30 Lieu : Oratrice ou orateur : Cécile Dartyge Résumé :https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html
ANNULÉ
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 23 mai 2019 14:15-15:15 Lieu : Oratrice ou orateur : Michail Marias Résumé :Chemins de Kloosterman de module une puissance d'un nombre premier
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 16 mai 2019 14:30-15:30 Lieu : Oratrice ou orateur : Guillaume Ricotta Résumé :https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html
Espace coarse, algèbre de Roe et application d'assemblage (suite).
Catégorie d'évènement : Groupe de travail Géométrie non commutative Date/heure : 16 mai 2019 14:15-16:00 Lieu : Oratrice ou orateur : Fabien Bessière Résumé :En 1982, Baum et Connes ont conjecturé que l’application d’assemblage est un isomorphisme. Dans cet exposé, nous verrons comment construire cette application dans le cas d’un espace coarse. Plus précisément, on fixe un groupe discret G agissant proprement sur un espace coarse X et on définit une application de la K-homologie équivariante à supports G-compacts de X vers la K-théorie de l’algèbre réduite de G. Nous définirons la notion d’espace coarse ainsi que les algèbres de Roe qui sont des C*-algèbres qui encodent la structure coarse. Nous rappellerons le théorème de Voiculescu et la dualité de Paschke qui sont deux notions indispensables dans la construction de l’application d’assemblage.
Espace coarse, algèbre de Roe et application d'assemblage (suite).
Catégorie d'évènement : Groupe de travail Géométrie non commutative Date/heure : 7 mai 2019 14:15-15:15 Lieu : Oratrice ou orateur : Fabien Bessière Résumé :En 1982, Baum et Connes ont conjecturé que l’application d’assemblage est un isomorphisme. Dans cet exposé, nous verrons comment construire cette application dans le cas d’un espace coarse. Plus précisément, on fixe un groupe discret G agissant proprement sur un espace coarse X et on définit une application de la K-homologie équivariante à supports G-compacts de X vers la K-théorie de l’algèbre réduite de G. Nous définirons la notion d’espace coarse ainsi que les algèbres de Roe qui sont des C*-algèbres qui encodent la structure coarse. Nous rappellerons le théorème de Voiculescu et la dualité de Paschke qui sont deux notions indispensables dans la construction de l’application d’assemblage.
La répartition du maximum des sommes partielles de sommes d'exponentielles
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 2 mai 2019 14:30-15:30 Lieu : Oratrice ou orateur : Youness Lamzouri Résumé :https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html
Espace coarse, algèbre de Roe et application d'assemblage.
Catégorie d'évènement : Groupe de travail Géométrie non commutative Date/heure : 2 mai 2019 14:15-16:00 Lieu : Oratrice ou orateur : Fabien Bessière Résumé :En 1982, Baum et Connes ont conjecturé que l’application d’assemblage est un isomorphisme. Dans cet exposé, nous verrons comment construire cette application dans le cas d’un espace coarse. Plus précisément, on fixe un groupe discret G agissant proprement sur un espace coarse X et on définit une application de la K-homologie équivariante à supports G-compacts de X vers la K-théorie de l’algèbre réduite de G. Nous définirons la notion d’espace coarse ainsi que les algèbres de Roe qui sont des C*-algèbres qui encodent la structure coarse. Nous rappellerons le théorème de Voiculescu et la dualité de Paschke qui sont deux notions indispensables dans la construction de l’application d’assemblage.