Exposés à venir
Grands ensembles évitant certaines configurations
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 24 avril 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Alexandre Bailleul (ENS Paris-Saclay) Résumé :En se laissant guider par l’exemple des ensembles de Sidon (ensembles de nombres dont les sommes de deux éléments sont uniques, très étudiés en combinatoire additive), je présenterai des résultats récents, en collaboration avec R. Riblet, où des techniques de théorie des ensembles permettent de construire des ensembles « grands » en certains sens (cardinalité, mesure ou dimension) tout en étant « épars » car évitant des configurations prescrites (pas de relation linéaire, ou ne contenant pas de parallélogramme, etc.). Des questions subtiles en lien avec l’axiome du choix seront évoquées.
Pseudogroups and geometric structures
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 mai 2025 14:15-15:15 Lieu : Salle de réunion Metz (ARC-027) Oratrice ou orateur : Francesco Cattafi (Würzburg) Résumé :This philosophy can be made precise at various levels of generality (depending on the definition of « geometric structure ») and using different tools/methods. In this talk I will present some aspects of a new framework, which includes previous formalisms (e.g. G-structures or Cartan geometries) and allows us to prove integrability theorems.
A main novelty of this point of view consists of the fact that it uncovers the (beautiful!) hidden structures behind Lie pseudogroups and geometric structures. Indeed, the relevant objects which make this approach work are Lie groupoids endowed with a multiplicative « PDE-structure », their principal actions, and the related Morita theory. Poisson geometry provides the guiding principle to understand those objects, which are directly inspired from, respectively, symplectic groupoids, principal Hamiltonian bundles, and symplectic Morita equivalence.
This is based on a forthcoming book written jointly with Luca Accornero, Marius Crainic and María Amelia Salazar.
A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (CNRS, Lille) Résumé :Antonio Miti – titre à venir
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 juin 2025 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Miti (Rome) Résumé :Archives
Corps de décomposition de et formes modulaires
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz
Date/heure : 16 mai 2024 14:30-15:30
Lieu : Salle Döblin
Oratrice ou orateur : Gabor Wiese (Université du Luxembourg)
Résumé : Dans son article `On a theorem of Jordan’, Serre considère la famille de polynômes
La méthode du col et les partitions des entiers
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 18 avril 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Manfred Madritsch (Université de Lorraine) Résumé :Dans le présent exposé, nous commençons par une introduction aux fonctions
génératrices et aux différentes méthodes permettant d’obtenir des formules
asymptotiques pour leurs coefficients. Après une excursion dans les nombres de
Fibonacci et les nombres catalans, nous introduisons les partitions d’entiers en
entiers. Autour de ce problème introductif, nous présentons la méthode du col et
ses applications. Ensuite, nous nous concentrons aux variants et des résultats récents. À la fin de l’exposé, nous présentons les travaux en cours
et des problèmes ouverts.
Les structures k-Poisson
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 avril 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Véronique Chloup (IÉCL) Résumé :Je donnerai la définition d’une structure k-Poisson vue comme une généralisation d’une structure k-plectique, étendant, en dimensions supérieures, le cas de la géométrie de Poisson et de la géométrie symplectique. Pour cela je suivrai l’article de Bursztyn, Cabrera, Iglesias : « Multisymplectic geometry and Lie groupoids » et je présenterai des définitions équivalentes permettant une utilisation plus facile. Pour finir, j’introduirai les structures k-Dirac qui généralisent ces notions et je développerai des exemples.
Uniform bounds for the density in Artin's conjecture on primitive roots
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 11 avril 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Antonella Perucca (Université du Luxembourg) Résumé :K-theory for crossed products by Bernoulli shifts
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 avril 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Siegfried Echterhoff (Münster) Résumé :For a large class of unital
Our results are motivated and generalize earlier results of Xin Li about the K-theory of lamplighter groups.
(joint work with Sayan Chakraborty, Julian Kranz, and Shintaro Nishikawa)
Bornes inférieures pour le nombre maximal de points rationnels des courbes sur les corps finis
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 4 avril 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Elisa Lorenzo Garcia (Université de Neuchâtel) Résumé :On the spectrum of the Dirac operator on degenerating Riemannian surfaces
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 4 avril 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Cipriana Anghel-Stan (Göttingen) Résumé :We study the behaviour of the spectrum of the spin Dirac operator on degenerating families of Riemannian surfaces, when the length of a simple closed geodesic shrinks to zero. We work under the hypothesis that the spin structure along the pinched geodesic is non-trivial. It is well-known that the spectrum of an elliptic differential operator on a compact manifold varies continuously under smooth perturbations of the metric. The difficulty of our problem arises from the non-compactness of the limit surface, which is of finite area with two cusps.
Changements de signes de sommes de fonctions multiplicatives
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 mars 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Youness Lamzouri (IECL) Résumé :Dans cet exposé, nous présenterons une méthode simple et efficace, qui a ses origines dans les travaux de Baker et Montgomery, et qui permet de produire des changements de signe de sommes de certaines fonctions multiplicatives réelles. Nous illustrons ensuite deux applications aux sommes de caractères de Dirichlet quadratiques ainsi qu’aux sommes de fonctions multiplicatives aléatoires de Rademacher. Ceci est basé sur un travail en commun avec O. Klurman et M. Munsch.
Ind-variétés de drapeaux multiples de type fini
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 21 mars 2024 15:45-16:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas Fresse (IÉCL) Résumé :Weyl sums with Multiplicative Coefficients and Joint Equidistribution
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 21 mars 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cynthia Bortolotto (ETH Zurich) Résumé :In 1964, Hooley proved that for an irreducible polynomial